STUDY OF THE EFFECT OF OZONIZATION ON ARCHIVE MATERIALS

Prepared by: Dr. Ing. Michal Ďurovič, Ing. Hana Paulusová, Roman Straka, PhMr. Bronislava Bacílková

National Archives, Prague

2008

CONTENTS

1 Introduction	3
2. Experimental part	4
2.1 Materials employed	4
2.2 Description of sample ozonization	4
2.3 Artificial ageing of samples	6
2.4 Method of determination of mechanical, chemical and optical properties	7
2.4.1 Preparation of samples prior to determining the mechanical properties	7
2.4.2 Determination of the folding endurance	7
2.4.3 Determination of the tensile strength	7
2.4.4 Determination of the total colour difference ΔE^*	7
2.4.5 Reflection UV/VIS spectra	7
2.4.6 Determination of the decoloration number DC ₄₅₇	8
2.4.7 Determination of the pH	8
2.4.8 Visual evaluation of the colour changes of archive documents	8
2.4.9 Determination of the effect of ozonization on selected microorganisms	8
3 Results and discussion	9
3.1 Folding resistance	9
3.2 Tensile strength	14
3.2.1 Breaking load	14
3.2.2 Elongation at break	19
3.2.3 Breaking length	24
3.3 Total colour difference ΔE^*	29
3.4. Determination of the decoloration number DC ₄₅₇	30
3.5 pH of an aqueous extract	31
3.6 Effect of ozonization on the stability of aryl methane dyes	31
3.6.1Reflection UV/VIS spectra	31
3.6.2 Total colour difference ΔE^*	39
3.7 Visual evaluation of changes in the colours of archive documents	40
3.7.1 Visual evaluation of changes in the colours of archive documents	40
3.7.2 Changes in the total colour difference ΔE^* of archive documents	59
3.8 Effect of ozonization on selected microorganisms	61
4 CONCLUSIONS	61

1 INTRODUCTION

Documents that are inundated in floods frequently have a typical "post-flood" smell after drying. This smell makes further use unpleasant or even impossible. Consequently, the technology of ozonization has been proposed for eliminating this smell; its principle is based on briefly placing the archive materials in an environment with elevated ozone concentration.

Ozone is a gas with a characteristic smell and is heavier than air. It is highly reactive, acts as a strong oxidizing agent and is very unstable. It decomposes relatively rapidly to oxygen O_2 . The decomposition half time is 45 minutes at a temperature of 20 °C and pressure of 101.3 kPa. The decomposition half time is only 20 minutes at a temperature of 30 °C at the same pressure.

Ozone is formed by the action of an electric discharge or short-wave UV radiation on an oxygen molecule. In practice, ozone is produced in generators from the air or from pure oxygen or from oxygen-rich gases using a silent electrical discharge. At a temperature of -112 °C, it condenses to form a dark blue liquid and a black-purple solid substance is formed at a temperature of -192.5 °C. Both substances are explosive and decompose to form oxygen.

The human sense of smell is especially sensitive to the smell of ozone and is thus able to register ozone at a concentration of only 2 ppm. Ozone is toxic and corrosive for all organisms. Prolonged presence on places with elevated ozone concentrations (above approx. $350 \ \mu g/m^3$) leads to a burning sensation in the eyes, nose and throat and, in some cases, also in the chest, with a cough and headache. Ozone concentrations above approx. $1100 \ \mu g/m^3$ cause serious irritation of the eyes and upper respiratory tract, accompanied by a headache. Concentrations above approx. $2150 \ \mu g/m^3$ cause very serious irritation of the membranes of the respiratory tract, bronchospasmic states and a cough within a very few minutes. Concentrations above $21000 \ \mu g/m^3$ lead to unconsciousness, bleeding and eventually death, depending on the exposure time

Regulation of the Government of the Czech Republic No. 178/2001 Coll. stipulates a permissible exposure limit (PEL) of $100 \ \mu g/m^3$, which must not be exceeded on a full-shift average. Short-term exceeding of this value is permissible up to a value of HPC-P, i.e. to $200 \ \mu g/m^3$ (the HPC-P value is the highest permissible concentration, which must not be exceeded under any conditions). Decree of the Ministry of Health of the Czech Republic No. 6/2002 Coll., stipulates the hygiene limits for chemical, physical and biological indicators

for an indoor environment in the residential rooms of certain structures. The limiting hourly concentration of ozone has been set at $100 \ \mu g/m^3$.

Ozone is considered to be an important external degradation factor damaging archive materials. Consequently, on the basis of a request by Belfor Czechia, spol. s r. o., the National Archives prepared the following study, which was intended to verify the effect of the ozonization technology on the chemical, optical and mechanical properties of various kinds of paper and on typical recording media.

2 EXPERIMENTAL PART

2.1 Materials employed

The following were employed to study the effect of ozonization on the chemical, optical and mechanical properties of various kinds of paper supports:

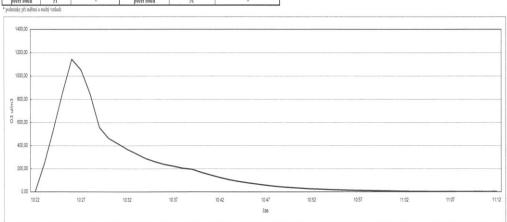
_	Whatman filter paper, 1.90 g/m^2	<i>(W)</i>
---	--	------------

- Paper for documents according to ISO 9706, 80 g/m^2 (ISO 9706)
- Groundwood paper, glazed on one side, 60 g/m^2 (DP)
- Wood-free writing paper CSN 502251, 60 g/m^2 (BPP)
- Bleached sulphite cellulose pulp, 80 g/m^2 (*MgBi*)
- Chemothermomechanical cellulose pulp, 75 g/m² (*CTMP*)

The following were employed to study the effect of ozonization on some selected aryl methane dyes and real archive materials:

Samples of Whatman No. 1 filter paper coloured with the following aryl methane dyes:
 Acid Red 87 (AR), Acid Green 16 (AG), Basic Violet 1 (methyl violet – MV), Basic
 Blue 6 (methylene blue – MB), Basic Green 4 (malachite green – MG).

0.1 % (wt) solutions of the dyes in ethanol were prepared, into which samples of Whatman No. 1 filter paper (5x5 cm) were immersed and were then dried in the air. Only for Basic Blue 6 was 50% ethyl alcohol employed.


 Samples of archive documents from the 19th and 20th centuries with various types of recording media (ink, stamps, printing, typewriter writing,...)

2.2 Description of ozonization of samples

Sheets of paper were hung individually on lines in space, the coloured papers were placed on grids roughly at the height of the Thermo Environmental Model 49 ozone analyzer, which monitored the progress of the ozonization (concentration, time). The experiment progressed from 10:22 A.M. to 11:12 A.M. at an initial temperature of 26.6 °C and relative humidity of 58.6 %. After the Airozon Supercracker (model POCS-500, Trotec, Germany) was turned on, the ozone concentration in the chamber increased over 10-15 minutes to the maximum value of $1144 \,\mu\text{g/m}^3$ and then decreased. The changes in the ozone concentration in dependence on time are depicted in *Fig. 1*. The temperature and relative concentration at the time of termination of the experiment were 18.3 °C and 55.3 %.

	1 min prům.	1 min prům.		1 min prům.	1 min prům.
ĊAS	O3* ul/m3	O3, ug/m3	ĆAS	O3* ul/m3	O3, ug/m3
10:22	1,39	2,77	10:53	22,3	44,5
10:23	244	487	10:54	19,0	37,9
10:24	541	1 079	10:55	16,4	32,7
10:25	860	1 716	10:56	14,1	28,1
10:26	1 144	2 282	10:57	11,9	23,7
10:27	1 052	2 099	10:58	10,4	20,7
10:28	845	1 686	10:59	9,00	18,0
10:29	557	1 111	11:00	7,51	15,0
10:30	463	924	11:01	6,53	13,0
10:31	418	834	11:02	5,10	10,2
10:32	370	738	11:03	4,55	9,08
10:33	331	660	11:04	3,78	7,54
10:34	290	579	11:05	3,13	6,24
10:35	262	523	11:06	2,77	5,53
10:36	240	479	11:07	2,27	4,53
10:37	223	445	11:08	1,55	3,09
10:38	206	411	11:09	1,83	3,65
10:39	196	391	11:10	2,02	4,03
10:40	169	337	11:11	1,96	3,91
10:41	147	293	11:12	2,37	4,73
10:42	125	249			
10:43	106	211			
10:44	91,1	182	3.50	*	
10:45	79,1	158		2	
10:46	67,9	135	(*)		
10:47	57,1	114			
10:48	48,9	97,6			
10:49	41,7	83,2	1.00		
10:50	35,8	71,4			
10:51	31,2	62,2			
10:52	25,9	51,7			
nax.hodnota/min	1 144	2 282	max.hodnota/min	1 144	2282
min.hodnota/min	1,39	2,77	min.hodnota/min	1,39	2,77
počet bodů	51		počet bodů	51	

Belfor Czechia, spol. s r.o., Měření ozonu při sanaci papírových dokumentů, 12.10.2007

Fig. 1 **Progress of sample ozonization**

2.3 Artificial ageing of samples

The samples were artificially aged in damp and dry atmospheres:

- According to ISO 5630/3-1981: Moist heat treatment at 80 °C and 65% relative humidity in an air-conditioning chamber (Sanyo Gallenkamp PLC, Great Britain) for a period of 30 days.
- According to ISO 5630/1-1981: Dry heat treatment at 103 °C in a chamber (Sanyo Gallenkamp OMT OVEN, Great Britain) for a period of 30 days.

2.4 Method of determination of mechanical, chemical and optical properties

2.4.1 Preparation of samples prior to determining the mechanical properties

Prior to measurement, samples with a width of 15 ± 0.1 mm were conditioned according to ISO 187 at 23 °C and 50% relative humidity for 24 hours. The mechanical properties of the sample were measured in the longitudinal and transverse directions. The samples were treated as average samples.

The results of measurement of the mechanical properties were processed statistically. The arithmetic mean, standard deviation and reliability interval were calculated at a significance level of $\alpha = 0.05$.

2.4.2 Determination of the folding endurance

The folding endurance was determined according to ISO 5626 of the test instrument according to Köhlera-Molina (AB Lorentzen & Wettre, Sweden) using a weight of 400 g (total weight of 600 g). 20 measurements were performed for each direction.

2.4.3 Determination of the tensile strength

The breaking load, elongation at break and breaking length were determined on instrument Alvetron TH1 (Lorentzen & Wettre, Sweden) according to CSN EN ISO 1924-2, Paper and Cardboard Determination of the tensile properties. The distance between the clamps was 100 ± 0.1 mm. 10 measurements were performed for each direction.

2.4.4 Determination of the total colour difference $\Delta E *$

The colour difference was determined using a CM-2600d portable spectrophotometer (Minolta, Japan). Monitoring was performed of the total colour difference ΔE_* , brightness deviation ΔL_* , Δa_* and Δb_* , depicting the difference in the positions in the CIEL colorimetric diagram *a*b*.

Measuring conditions: observer angle 2°, illumination source D65 (chromaticity temperature 6504 K), average measured area 8 mm.

2.4.5 Reflection UV/VIS spectra

The reflection spectra in the ultraviolet and visible spectral regions (250–750 nm) of Whatman No. 1 filter paper samples, which were coloured with aryl methane dye, were measured on a UV 500 UV/VIS Spectrometer (Unicam, Great Britain).

2.4.6 Determination of the decoloration number DC₄₅₇

Decoloration number DC_{457} is defined according to CSN 50 0409 by the following relationship:

$$DC_{457} = {}^{o}(K/S)_{457} - {}^{a}(K/S)_{457}$$

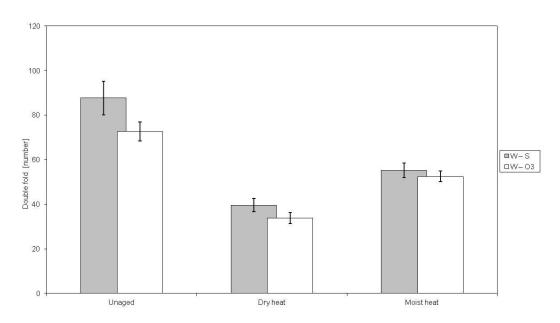
where the ratio factor ${}^{o}(K/S)_{457}$ calculated according to the Kubelka-Munk equation corresponds to the original sample and ratio factor ${}^{a}(K/S)_{457}$ of the sample following the relevant decoloration change (ozonization, artificial ageing). The DC value is positive for lightening – i.e. *positive decoloration number*, the decoloration number is negative for darkening – i.e. *negative decoloration number*. A Leukometr instrument (Carl Zeiss, Jena, Germany) was used for the measurement.

2.4.7 Determination of the pH

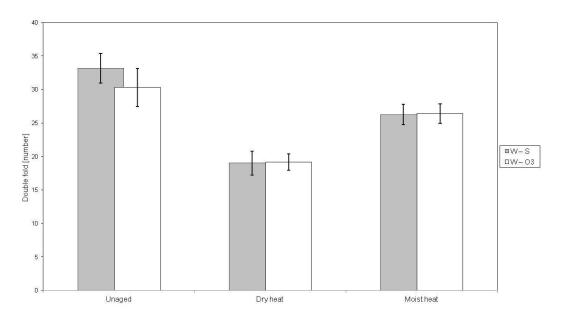
The pH values were determined by the cold extraction method according to CSN ISO 6588 on a PerpHecT–meter, model 310 instrument using AquaPro pH combined extraction electrodes (ORION, USA).

2.4.8 Visual evaluation of the colour changes of archive documents

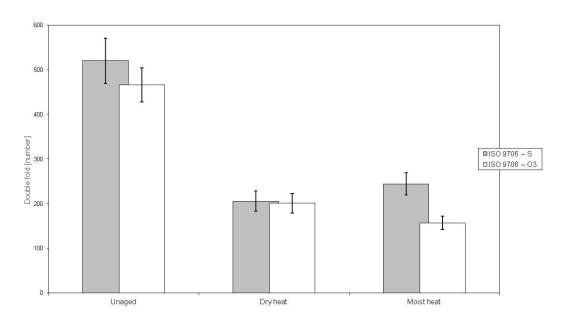
Archives from the 19th and 20th century, cut into strips, were employed to study the effect of ozonization on real archive documents. Some of the strips were subject to ozonization and artificial ageing. Evaluation of the effect of ozonization on colour changes in the paper support and the actual recording media were evaluated visually and recorded photographically using a digital camera.

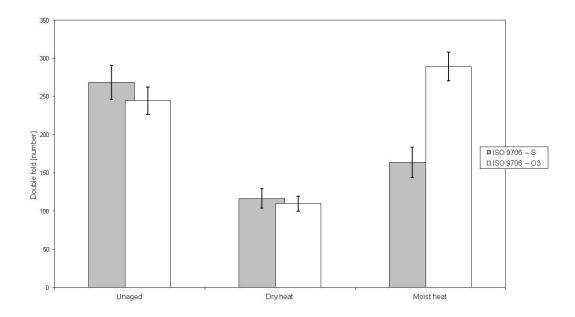

2.4.9 Determining the effect of ozonization on selected micro-organisms

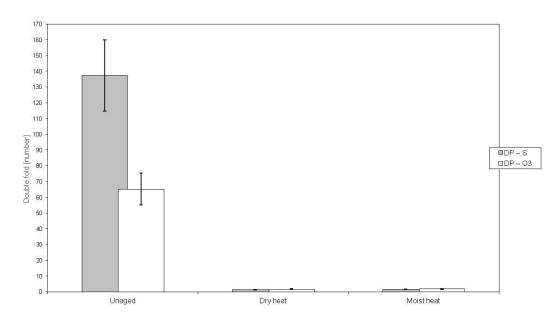
The effect of ozonization on micro-organisms was studied using selected commonly occurring species of fibrous fungi (moulds) derived from the depositary archives - Aspergillus niger, Penicillium aurantiogriseum and Trichoderma koningii. The mould spores were applied to the surface of paper squares with a size of 2×2 cm and stored in paper envelopes (only one sample of each kind in each sample). Ten of these envelopes were distributed at various places in the chamber and subjected to the effect of ozone. Then the samples were aseptically removed from the envelopes and placed on the surface of malt wort nutrient agar. Cultivation proceeded at 24 ± 4 °C for 7 days. The growth of mould was monitored and was compared with the untreated (control) samples.

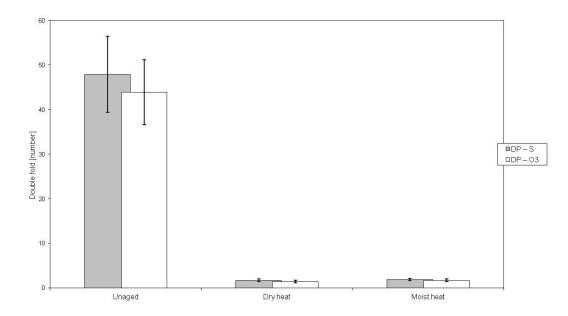

3 RESULTS AND DISCUSSION

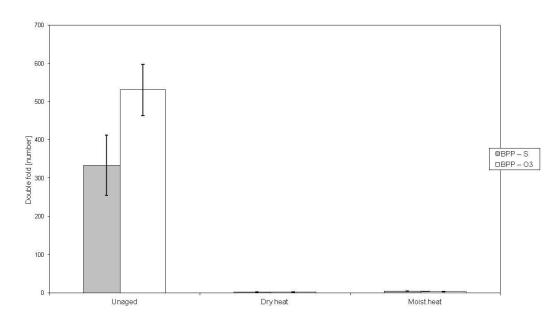
3.1 Folding endurance

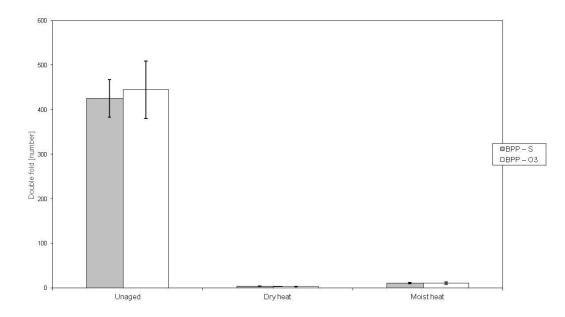

Figs. 2 to 11 depict the dependence of the effect of ozonization and artificial ageing by dry and damp heat on the folding endurance of various kinds of paper. The negligible effect of ozonization on this mechanical property is apparent from the histograms.

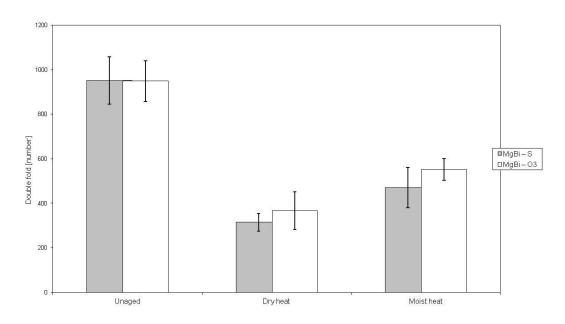

Fig. 2 Effect of ozonization and artificial ageing on the folding endurance of Whatman No. 1 filter paper in the machine direction


Fig. 3 Effect of ozonization and artificial ageing on the folding endurance of Whatman No. 1 filter paper in the cross direction


Fig. 4 Effect of ozonization and artificial ageing on the folding endurance of paper ISO 9706 in the machine direction


Fig. 5 Effect of ozonization and artificial ageing on the folding endurance of paper ISO 9706 in the cross direction


Fig. 6 Effect of ozonization and artificial ageing on the folding endurance of groundwood paper in the machine direction


Fig. 7 Effect of ozonization and artificial ageing on the folding endurance of groundwood paper in the cross direction

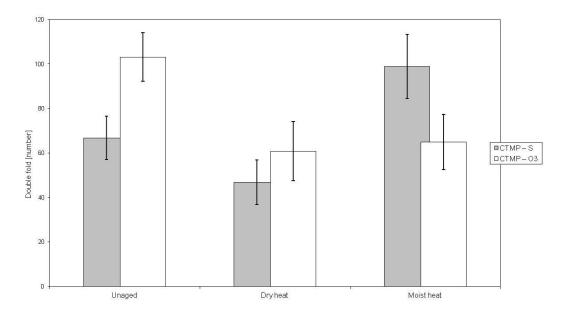
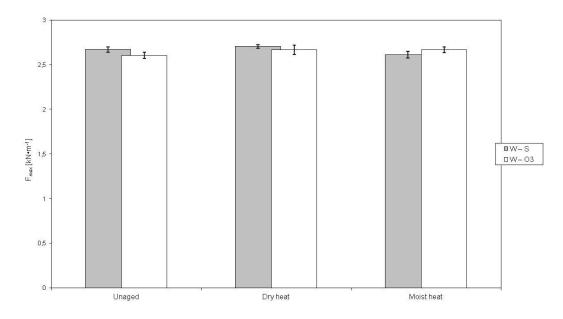
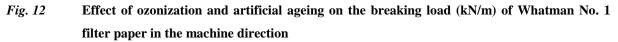
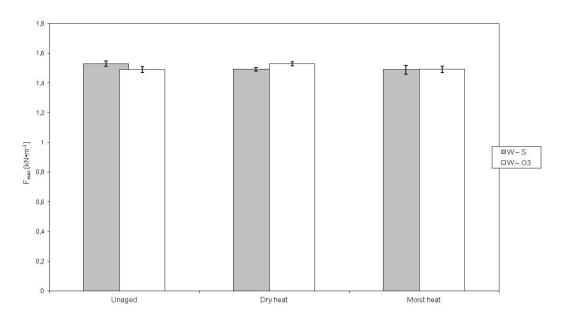

Fig. 8 Effect of ozonization and artificial ageing on the folding endurance of wood-free writing paper in the machine direction

Fig. 9 Effect of ozonization and artificial ageing on the folding endurance of wood-free writing paper in the cross direction

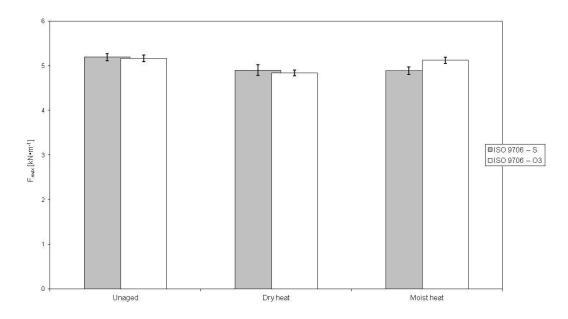
Fig. 10 Effect of ozonization and artificial ageing on the folding endurance of bleached sulphite pulp

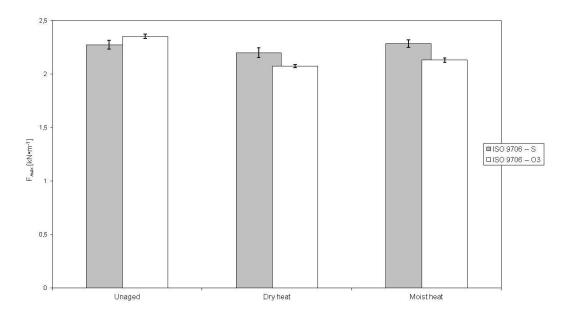


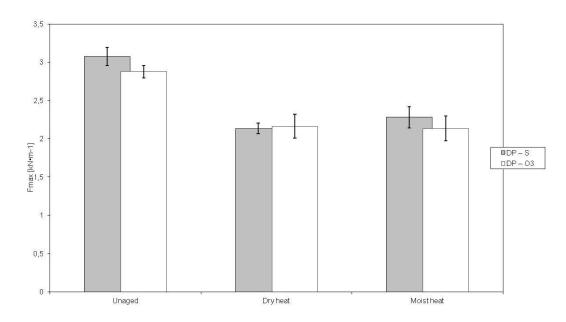

Fig. 11 Effect of ozonization and artificial ageing on the folding endurance of chemothermomechanical pulp

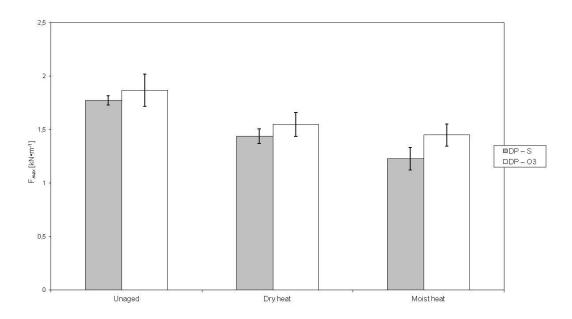

3.2 Tensile strength

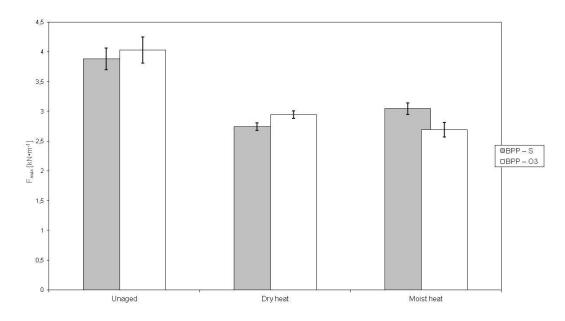
3.2.1 Breaking load

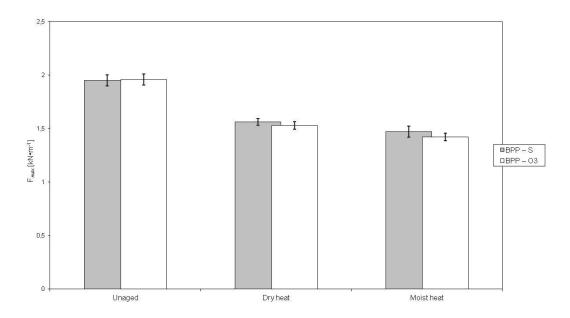

Figs. *12 to 21* depict the dependence of the effect of ozonization and artificial ageing by dry and damp heat on the breaking load (kN/m) of various kinds of paper. The negligible effect of ozonization on this mechanical property is apparent from the histograms.

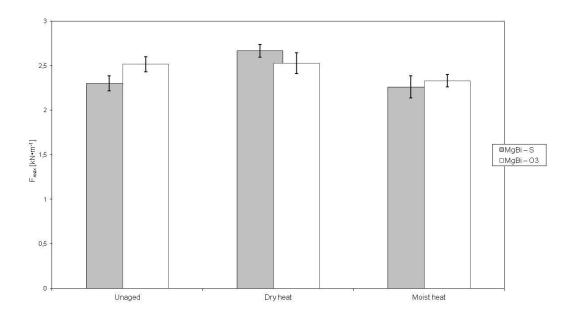



Fig. 13 Effect of ozonization and artificial ageing on the breaking load (kN/m) of Whatman No. 1 filter paper in the cross direction


Fig. 14 Effect of ozonization and artificial ageing on the breaking load (kN/m) of paper ISO 9706 in the machine direction


Fig. 15 Effect of ozonization and artificial ageing on the breaking load (kN/m) of paper ISO 9706 in the cross direction


Fig. 16 Effect of ozonization and artificial ageing on the breaking load (kN/m) of groundwood paper in the machine direction


Fig. 17 Effect of ozonization and artificial ageing on the breaking load (kN/m) of groundwood paper in the cross direction

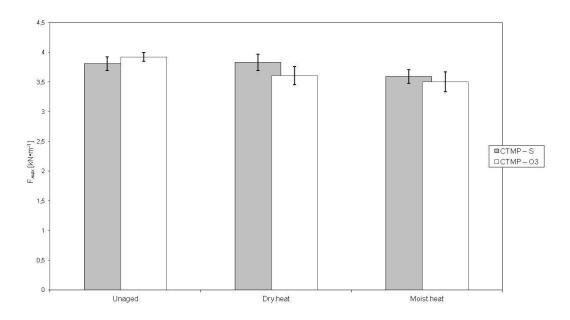
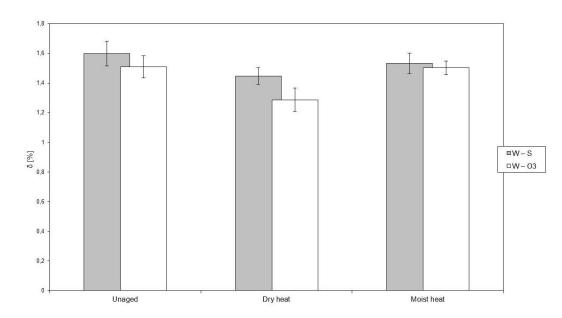
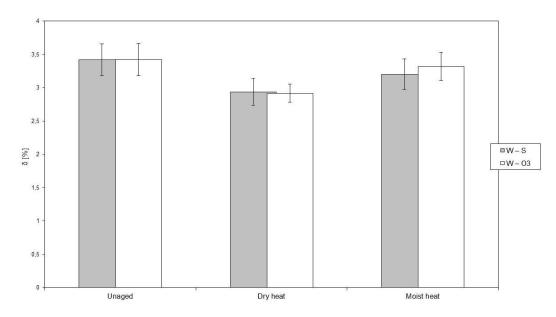
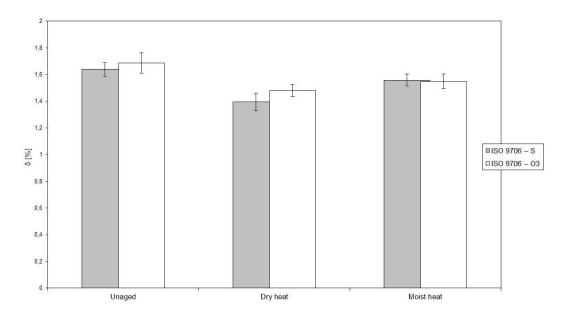

Fig. 18 Effect of ozonization and artificial ageing on the breaking load (kN/m) of wood-free writing paper in the machine direction

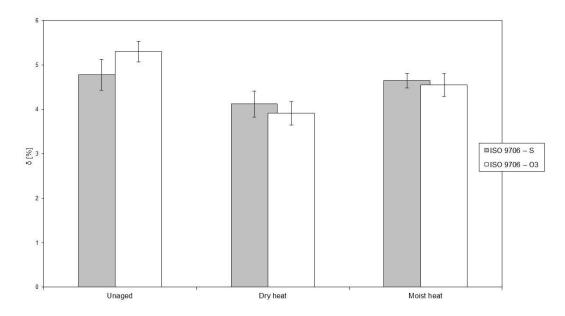
Fig. 19 Effect of ozonization and artificial ageing on the breaking load (kN/m) of wood-free writing paper in the cross direction

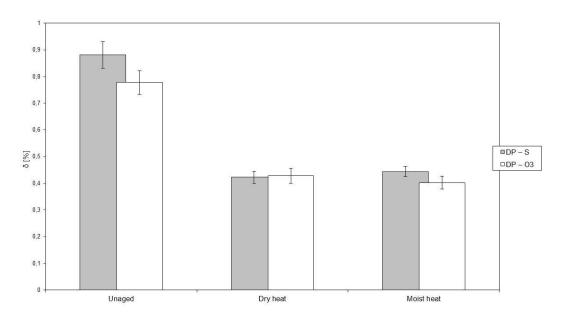

Fig. 20 Effect of ozonization and artificial ageing on the breaking load (kN/m) of bleached sulphite pulp

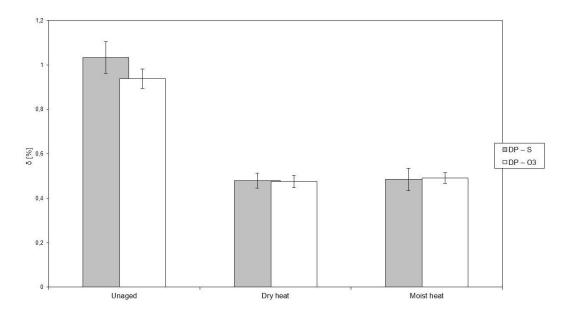

Fig. 21 Effect of ozonization and artificial ageing on the breaking load (kN/m) of chemothermomechanical pulp

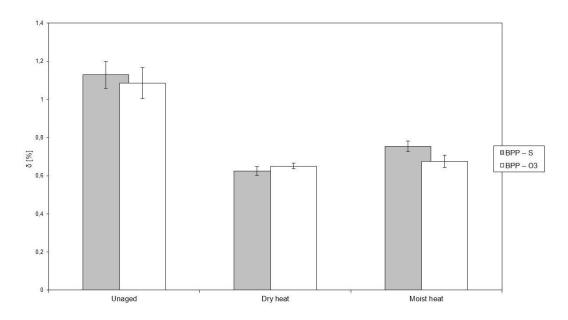
3.2.2 Elongation at break

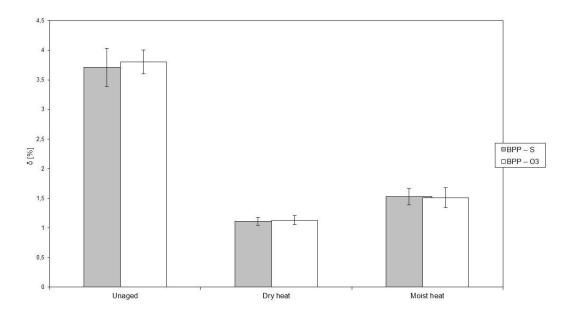

The histograms in Figs 22 to 31 depict the dependence of the effect of ozonization and artificial ageing by dry and damp heat on the elongation at break (%) of various kinds of paper. Ozonization does not affect this mechanical property.

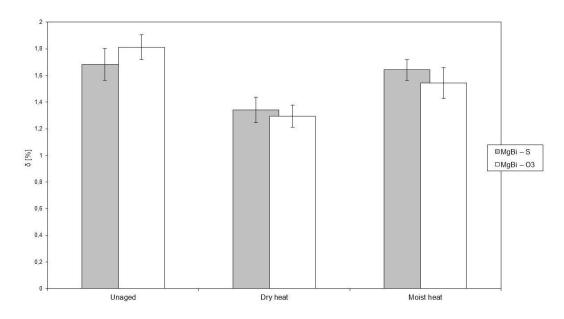

Fig. 22 Effect of ozonization and artificial ageing on the elongation at break (%) of Whatman No. 1 paper in the machine direction


Fig. 23 Effect of ozonization and artificial ageing on the elongation at break (%) of Whatman No. 1 paper in the cross direction


Fig. 24 Effect of ozonization and artificial ageing on the elongation at break (%) of paper ISO 9706 in the machine direction


Fig. 25 Effect of ozonization and artificial ageing on the elongation at break (%) of paper ISO 9706 in the cross direction


Fig. 26 Effect of ozonization and artificial ageing on the elongation at break (%) of groundwood paper in the machine direction


Fig. 27 Effect of ozonization and artificial ageing on the elongation at break (%) of groundwood paper in the cross direction

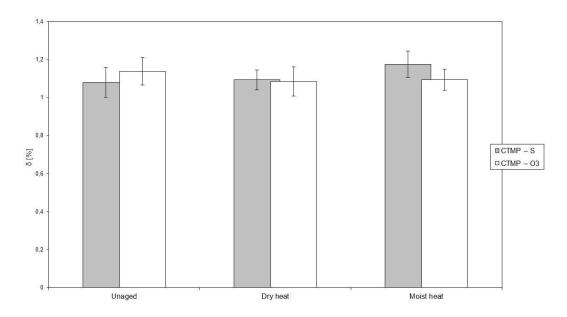
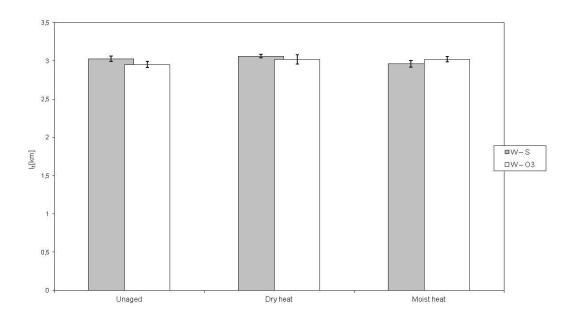
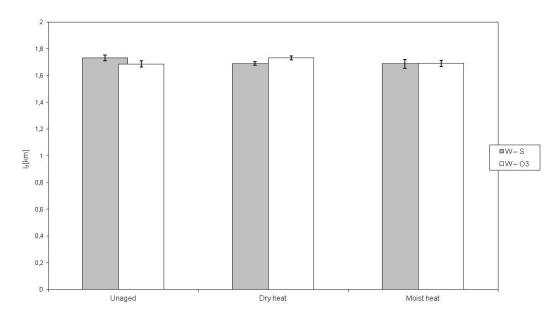
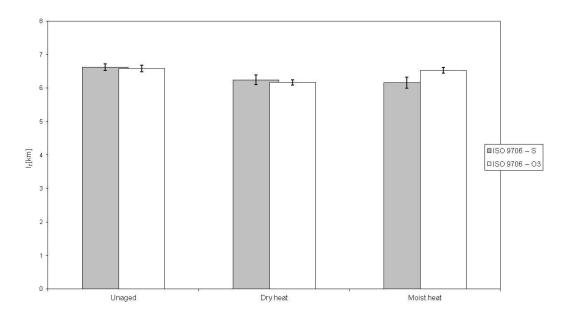

Fig. 28 Effect of ozonization and artificial ageing on the elongation at break (%) of wood-free writing paper in the machine direction

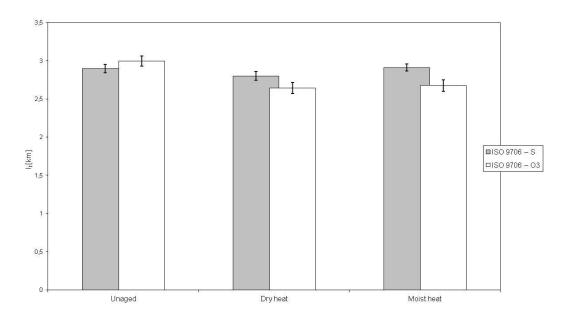
Fig. 29 Effect of ozonization and artificial ageing on the elongation at break (%) of wood-free writing paper in the cross direction

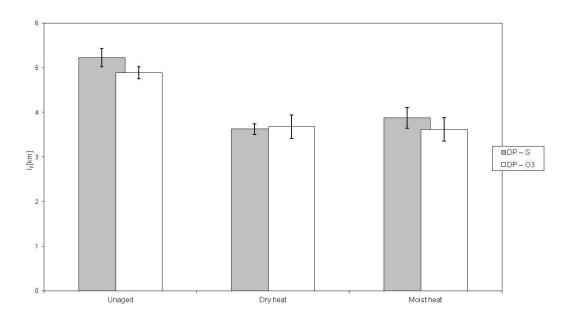

Fig. 30 Effect of ozonization and artificial ageing on the elongation at break (%) of bleached sulphite pulp

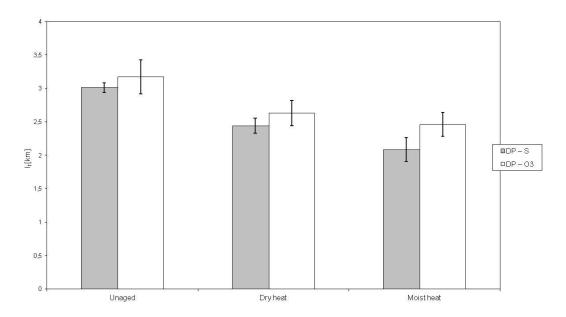

Fig. 31 Effect of ozonization and artificial ageing on the elongation at break (%) of chemothermomechanical pulp

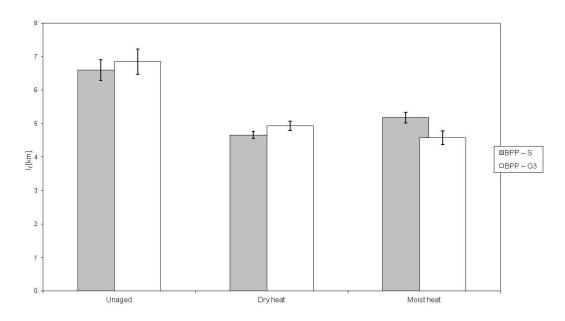
3.2.3 Breaking length

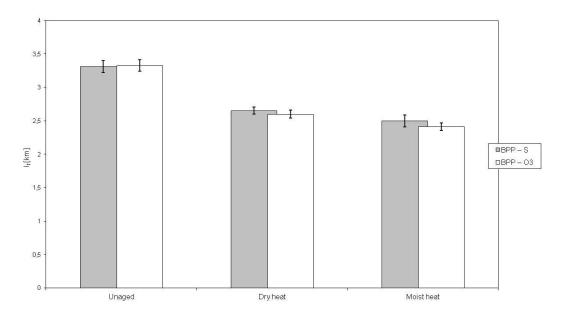

Figs. *32 to 41* depict the dependence of the effect of ozonization and artificial ageing by dry and damp heat on the breaking length (km) of various kinds of paper. Ozonization has practically a negligible effect on this mechanical property.

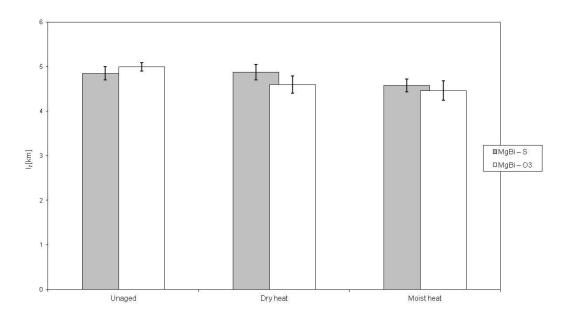

Fig. 32 Effect of ozonization and artificial ageing on the breaking length (km) of Whatman No. 1 paper in the machine direction


Fig. 33 Effect of ozonization and artificial ageing on the breaking length (km) of Whatman No. 1 paper in the cross direction


Fig. 34 Effect of ozonization and artificial ageing on the breaking length (km) of paper ISO 9706 in the machine direction


Fig. 35 Effect of ozonization and artificial ageing on the breaking length (km) of paper ISO 9706 in the cross direction


Fig. 36 Effect of ozonization and artificial ageing on the breaking length (km) of groundwood paper in the machine direction


Fig. 37 Effect of ozonization and artificial ageing on the breaking length (km) of groundwood paper in the cross direction

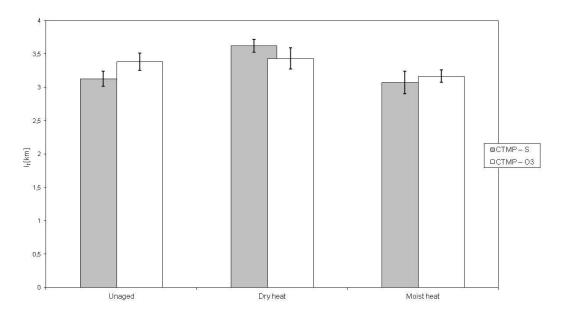

Fig. 38 Effect of ozonization and artificial ageing on the breaking length (km) of wood-free writing paper in the machine direction

Fig. 39 Effect of ozonization and artificial ageing on the breaking length (km) of wood-free writing paper in the cross direction

Fig. 40 Effect of ozonization and artificial ageing on the breaking length (km) of bleached sulphite pulp

Fig. 41 Effect of ozonization and artificial ageing on the breaking length (km) of chemothermomechanical pulp

3.3 Total colour difference $\Delta E*$

Tab. 1 gives the values of L*, a* and b*, their differences and the total colour differences $\Delta E*$ of the individual kinds of tested papers. It follows from the given values of the total colour difference that ozonization has practically no effect on the colour of documents.

Paper sample	L*	a*	b*	ΔL*	∆a*	Δb*	ΔE*
DP – unaged	85.71	3.56	18.62				
DP – moist heat	76.23	7.38	22.34	-9.48	3.82	3.72	10.88
DP – dry heat	69.11	9.77	24.73	-16.6	6.21	6.11	18.75
$DP - O_3 - unaged$	84.04	4.40	19.00	-1.67	0.84	0.38	1.91
DP – O3 – moist heat	77.31	7.27	23.17	-8.40	3.71	4.55	10.25
DP – O3 – dry heat	75.05	8.81	26.28	-10.66	5.25	7.66	14.14
BPP – unaged	94.87	0.04	6.25				
BPP – moist heat	90.33	1.72	13.20	-4.54	1.68	6.95	8.47
BPP – dry heat	90.64	1.33	17.43	-4.23	1.29	11.18	12.02
$BPP - O_3 - unaged$	94.96	-0.05	5.99	0.09	-0.09	-0.26	0.29
BPP – O3 – moist heat	90.17	1.76	12.71	-4.70	1.72	6.46	8.17
BPP – O3 – dry heat	91.09	0.98	16.73	-3.78	0.94	10.48	11.18
W – unaged	97.33	0.13	2.10				
W – moist heat	94.92	0.70	6.08	-2.41	0.57	3.98	4.69
W – dry heat	96.45	-0.08	5.66	-0.88	-0.21	3.56	3.67
W – O ₃ – unaged	97.40	0.14	2.11	0.07	0.01	0.01	0.07
W – O3 – moist heat	94.91	0.71	6.28	-2.42	0.58	4.18	4.86
W – O3 – dry heat	96.58	-0.07	5.22	-0.75	-0.2	3.12	3.22
ISO 9706 – unaged	96.53	-0.13	4.55				
ISO 9706 – moist heat	92.76	1.12	10.39	-3.77	1.25	5.84	7.06
ISO 9706 – dry heat	94.59	-0.22	10.94	-1.94	-0.09	6.39	6.68
ISO 9706 – O ₃ – unaged	96.48	-0.18	4.62	-0.05	-0.05	0.07	0.03
ISO 9706 – O ₃ – moist heat	93.09	1.00	9.73	-3.44	1.13	5.18	6.32
ISO 9706 – O ₃ – dry heat	94.61	-0.11	10.65	-1.92	0.02	6.1	6.40
CTMP – unaged	93.32	-0.56	13.42				
CTMP – moist heat	84.63	4.08	21.50	-8.69	4.64	8.08	12.74
CTMP – dry heat	85.60	4.15	24.13	-7.72	4.71	10.71	14.02
CTMP – O ₃ – unaged	93.03	-0.28	13.64	-0.29	0.28	0.22	0.46
CTMP – O3 – moist heat	84.12	4.32	21.66	-9.2	4.88	8.24	13.28
CTMP – O3 – dry heat	85.67	4.10	24.17	-7.65	4.66	10.75	13.99
MgBi – unaged	95.48	-0.03	6.36				
MgBi – moist heat	89.89	1.76	12.98	-5.59	1.79	6.62	8.85
MgBi – dry heat	93.30	-0.15	13.83	-2.18	-0.12	7.47	7.78
MgBi – O ₃ – unaged	95.52	-0.11	6.65	0.04	-0.08	0.29	0.30
MgBi – O3 – moist heat	89.92	1.69	12.83	-5.56	1.72	6.47	8.70
MgBi – O3 – dry heat	93.50	-0.18	13.73	-1.98	-0.15	7.37	7.63

Tab. 1.	Effect of ozonization on the total colour difference $\Delta E *$ of individual kinds of paper.
---------	---

3.4. Determination of the decoloration number DC₄₅₇

Tab. 2 gives the reflectivity at critical sample thickness (R_{∞}), the ratio factor K/S calculated from the Kubelka-Munk equation and the decoloration number (DC_{457}) of the samples following ozonization and artificial ageing. It follows from these data that ozonization does not cause substantial changes in this parameter.

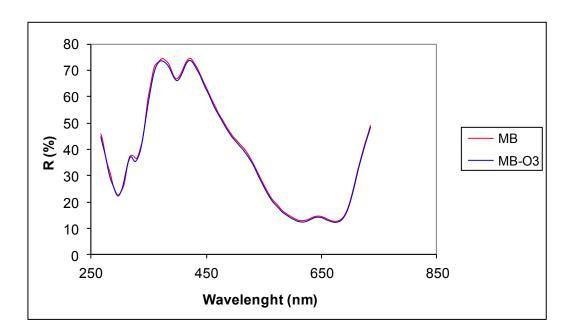
Sample of paper	\mathbf{R}_{∞}	K/S	DC ₄₅₇
DP – unaged	48.6	0.2718	
DP – moist heat	30.3	0.8017	-0.5299
DP – dry heat	23.2	1.2712	-0.9994
$DP - O_3 - unaged$	48.1	0.2800	-0.0082
DP – O3 – moist heat	32.8	0.6884	-0.4166
DP – O3 – dry heat	31.5	0.7448	-0.4730
BPP – unaged	79.3	0.0270	
BPP – moist heat	62.9	0.1094	-0.0824
BPP – dry heat	60.0	0.1333	-0.1063
BPP – O_3 – unaged	78.9	0.0282	-0.0012
BPP – O3 – moist heat	62.4	0.1133	-0.0863
BPP – O3 – dry heat	61.1	0.1238	-0.0968
W – unaged	93.0	0.0026	
W – moist heat	79.8	0.0256	-0.0230
W – dry heat	83.8	0.0157	-0.0131
$W - O_3 - unaged$	91.8	0.0037	-0.0011
W – O3 – moist heat	79.3	0.0270	-0.0244
W – O3 – dry heat	84.5	0.0142	-0.0116
ISO 9706 – unaged	86.5	0.0105	
ISO 9706 – moist heat	71.5	0.0568	-0.0543
ISO 9706 – dry heat	75.4	0.0401	-0.0296
ISO 9706 – O ₃ – unaged	86.8	0.0100	+0.0005
ISO 9706 – O ₃ – moist heat	73.1	0.0494	-0.0389
ISO 9706 – O ₃ – dry heat	75.7	0.0390	-0.0285
CTMP – unaged	66.7	0.0831	
CTMP – moist heat	47.7	0.2867	-0.2036
CTMP – dry heat	45.2	0.3322	-0.2491
CTMP – O ₃ – unaged	67.0	0.0813	+0.0018
CTMP – O3 – moist heat	46.3	0.3114	-0.2283
CTMP – O3 – dry heat	46.3	0.3114	-0.2283
MgBi – unaged	73.0	0.0499	
MgBi – moist heat	59.2	0.1406	-0.0907
MgBi – dry heat	60.9	0.1255	-0.0756
$MgBi - O_3 - unaged$	73.1	0.0495	+0.0004
MgBi – O3 – moist heat	58.6	0.1462	-0.0963
MgBi – O3 – dry heat	62.2	0.1149	-0.0650

Tab. 2. Effect of ozonization on the decoloration number DC₄₅₇ for the individual kinds of paper.

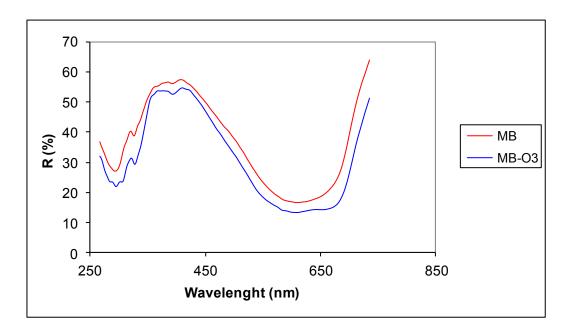
3.5 pH of an aqueous extract

Tab. 4 gives the pH values of an aqueous extract of samples of paper following ozonization and artificial ageing. Ozone has a practically negligible effect on the pH of a cold extract.

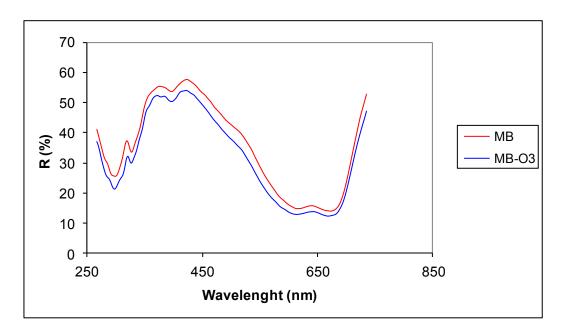
Tab. 3.	Effect of ozonization and artificial ageing on the overall pH of an aqueous extract	
	of the individual kinds of paper.	

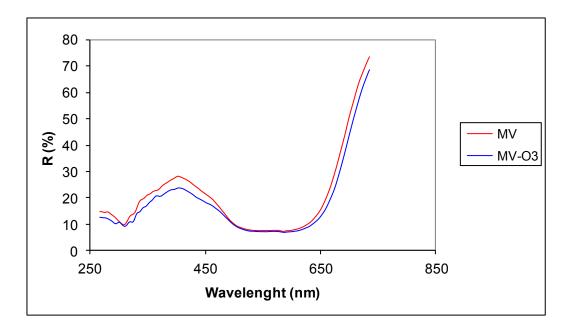

Sample of paper	Unaged	Moist heat	Dry heat
DP	4.57	4.29	3.95
$DP - O_3$	4.30	4.55	4.31
BPP	5.84	5.25	4.75
$BPP - O_3$	5.16	4.58	4.72
W	6.30	6.30	6.03
$W - O_3$	6.25	6.17	6.07
ISO 9706	8.75	8.57	8.55
ISO 9706 – O ₃	8.90	8.59	8.58
СТМР	6.60	6.23	6.14
$CTMP - O_3$	6.60	6.34	6.31
MgBi	7.45	6.70	6.53
$MgBi - O_3$	7.36	6.90	6.40

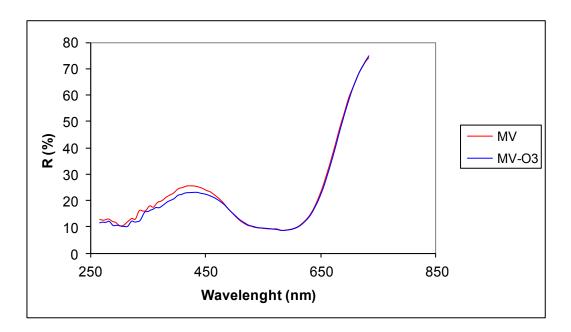
3.6 Effect of ozonization on the stability of aryl methane dyes

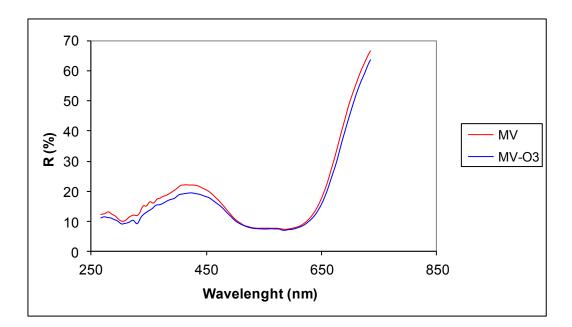

3.6.1 Reflection UV/VIS spectra

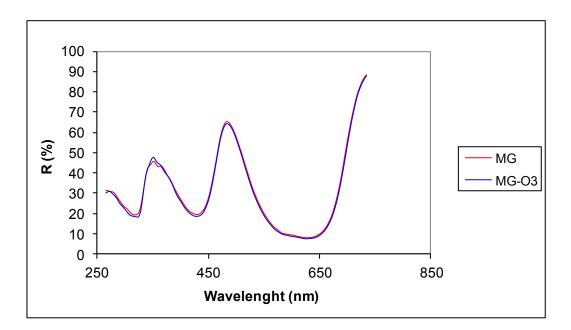
Figs. 42 to 56 give the reflectance spectra in the visible and ultraviolet regions (UV/VIS) of some aryl methane dyes following ozonization and artificial ageing by dry and moist heat. It is apparent from the figures that ozonization has no fundamental effect on the shapes of the curves of the reflectance spectra of the individual dyes.

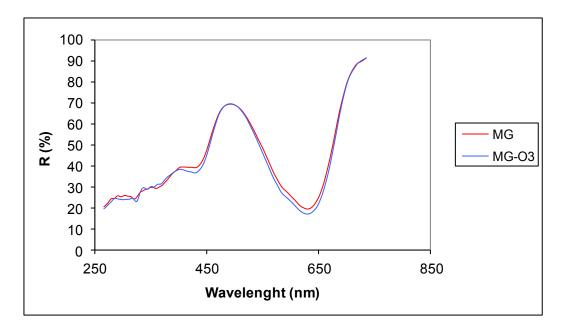

It can be stated that ozonization has a minimal or no effect on the stability of the studied aryl methane dyes.

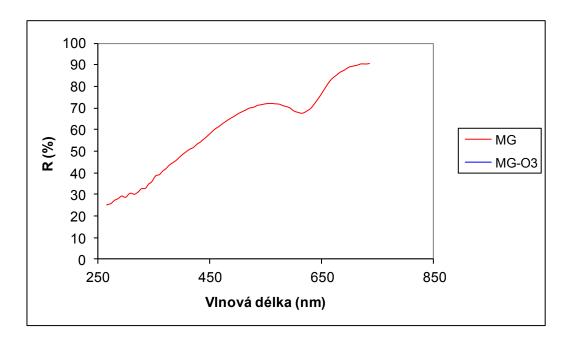

Fig. 42 Effect of ozonization on the UV/VIS reflectance spectra of the dye Basic Blue 6

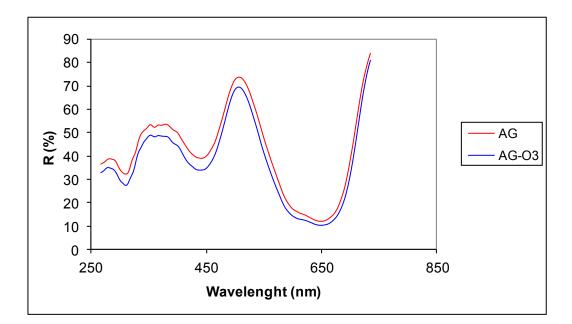

Fig. 43 Effect of ozonization and artificial ageing by dry heat on the UV/VIS reflectance spectra of the aryl methane dye Basic Blue 6

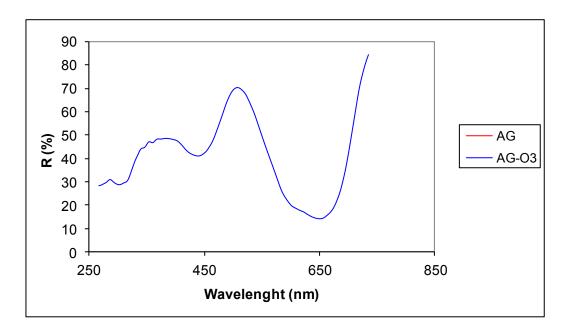

Fig. 44 Effect of ozonization and artificial ageing by moist heat on the UV/VIS reflectance spectra of the aryl methane dye Basic Blue 6

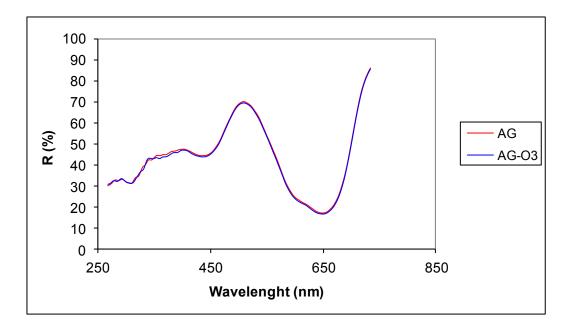

Fig. 45 Effect of ozonization on the UV/VIS reflectance spectra of the dye Basic Violet 1

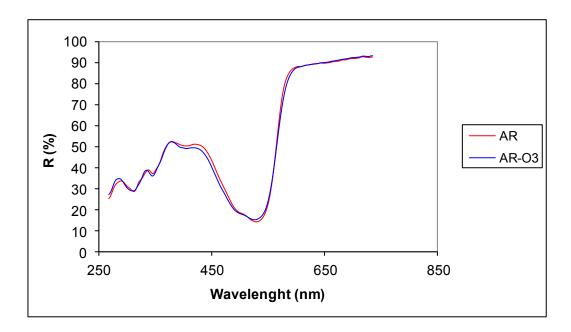

Fig. 46 Effect of ozonization and artificial ageing by dry heat on the UV/VIS reflectance spectra of the aryl methane dye Basic Violet 1

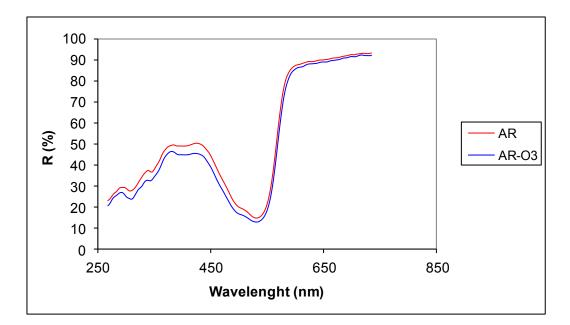

Fig. 47 Effect of ozonization and artificial ageing by moist heat on the UV/VIS reflectance spectra of the aryl methane dye Basic Violet 1


Fig. 48 Effect of ozonization on the UV/VIS reflectance spectra of the dye Malachite Green


Fig. 49 Effect of ozonization and artificial ageing by dry heat on the UV/VIS reflectance spectra of the aryl methane dye Malachite Green


Fig. 50 Effect of ozonization and artificial ageing by moist heat on the UV/VIS reflectance spectra of the aryl methane dye Malachite Green


Fig. 51 Effect of ozonization on the UV/VIS reflectance spectra of the aryl methane dye Acid Green 16


Fig. 52 Effect of ozonization and artificial ageing by dry heat on the UV/VIS reflectance spectra of the aryl methane dye Acid Green 16

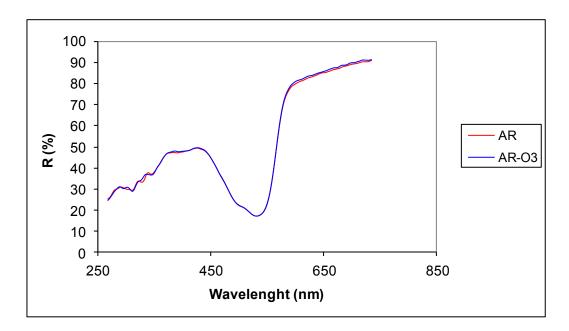

Fig. 53 Effect of ozonization and artificial ageing by moist heat on the UV/VIS reflectance spectra of the aryl methane dye Acid Green 16

Fig. 54 Effect of ozonization on the UV/VIS reflectance spectra of the aryl methane dye Acid Red 87

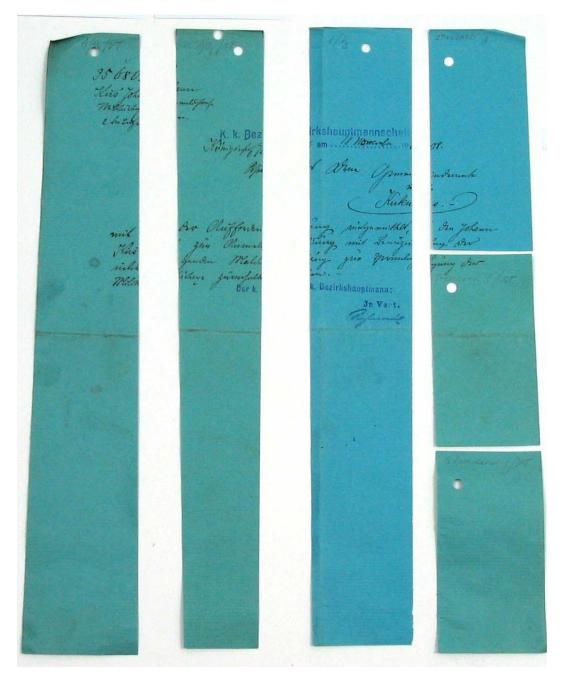
Fig. 55 Effect of ozonization and artificial ageing by dry heat on the UV/VIS reflectance spectra of the aryl methane dye Acid Red 87

Fig. 56 Effect of ozonization and artificial ageing by moist heat on the UV/VIS reflectance spectra of the aryl methane dye Acid Red 87

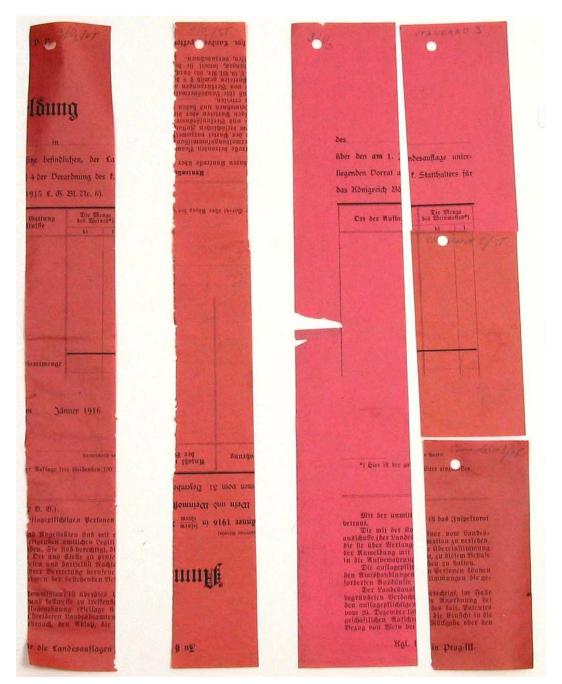
3.6.2 Total colour difference $\Delta E *$

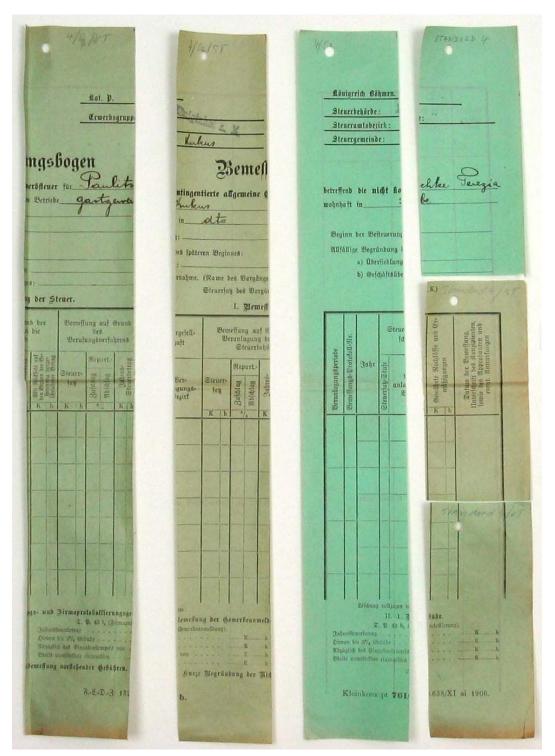
It follows from the data on the total colour difference ΔE^* of any methane dyes after ozonization and artificial ageing in *Tab. 3* that ozonization has no effect on the individual dyes.

Tab. 4.	Effect of ozonization and artificial ageing on the total colour difference ΔE^* of the individual
	kinds of aryl methane dyes.

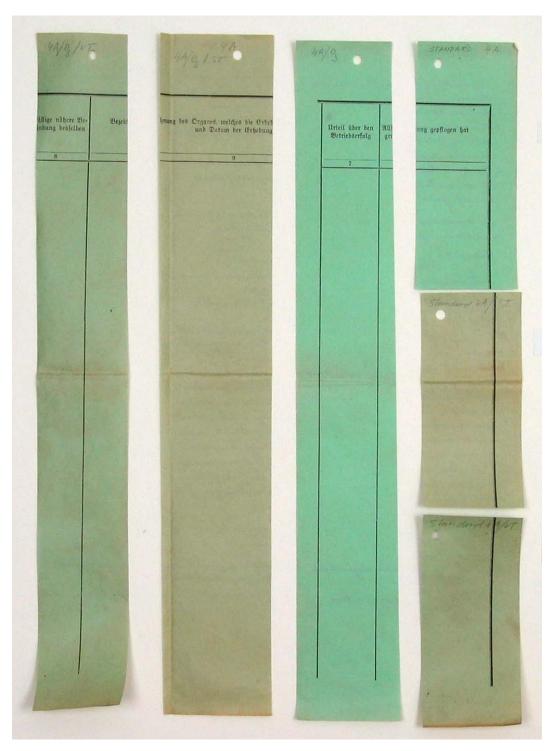

Paper sample	ΔE^*
Basic Blue 6 – moist heat	9.58
Basic Blue 6 – O3 – moist heat	9.20
Basic Blue 6 – dry heat	9.07
Basic Blue 6 – O3 – dry heat	9.10
Basic Violet 1 – moist heat	6.60
Basic Violet 1 – O3 – moist heat	9.30
Basic Violet 1 – dry heat	10.09
Basic Violet 1 – O3 – dry heat	9.84
Malachite Green – moist heat	59.19
Malachite Green – O3 – moist heat	60.39
Malachite Green – dry heat	23.11
Malachite Green – O3 – dry heat	23.72
Acid Green 16 – moist heat	11.33
Acid Green 16 – O3 – moist heat	10.36
Acid Green 16 – dry heat	5.21
Acid Green 16 – O3 – dry heat	4.98
Acid Red 87 – moist heat	5.96
Acid Red 87 – O3 – moist heat	5.97
Acid Red 87 – dry heat	2.24
Acid Red 87 – O3 – dry heat	2.58

3.7 Visual evaluation of changes in the colours of archive documents


3.7.1 Visual evaluation of changes in the colours of archive documents


Visual comparison of the effect of ozonization and artificial ageing on archive documents from the 19th and 20th centuries was performed by ordering these documents according to the following scheme and were then photographed (*samples No. 1 to 14*):

1	2	3	4
ozonization, moist heat ageing	ozonization, dryheat ageing	ozonization, unaged	standard, unaged
			5 standard,
			dry heat ageing
			6 standard, moist heat ageing



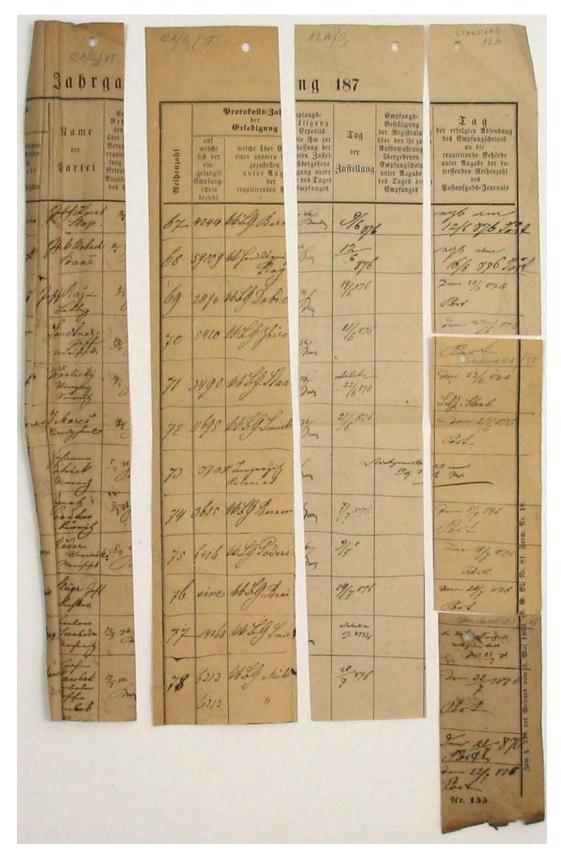
Sample No. 4a

STANDARD 5 M.h. S. 04, 190.8 Honiginho <u>Z...</u> Du mein deamte Mus Hen chle zur der beige Tex Coulton ale alishe Usise. 1 meanthan velaher Um Hand. lemintliel ese Hum besta t int wenter gleic e fe 1 die Incaker Hausei quitime elche atesell invertang der adeter True 9 esorters sind mis het we best de ach michilermit belace . 9 ussen oder 4 warip. num. e mit de n ve den Parteien hortens gen & den beiliegen dere ter the soder Ala. cellers. 91 falls anher meller Mard ser tis . I.S. non ber igo 8 einsuser Der k.k. Son ichshauptre aure.

6/3 STANDARD 6 jakesday, and es Neu Mirer. 1908. ancienteversten ce ! Jun tori Juneta more fulles amoin jugar all n, in the one 02 in well he chifright " Infalls -2-01 - P2% trea deats ch em Green I base : devintreheefte Goldegfan 4 hof. Sor Or val der lan chen lecine Eusino de Sirter 6 Morijin chandrar a/k and me 790 ell anduran

7/13/1	T.	#103/ST	7/3-0	274.004RD 7
17 miles				in amore .
and the second				Canto
A Long and				
	Tit			
			N	-1 augustus
		Generálne finar	ičné risditelstvo pre i	Slovensko,
	1	A. 5		
	no 1/2	a we write an after	Brati	sleve,
		1 there particularly	2 Sugar in Me	
	- 10.	1 in a city		
	K to	mnimu čis. XII - C.	LB/2 a1 1931.	Comment of ST
and the second				Later announces
A Contraction		a state	na citovaný dekret z	e dne 3.března t.r.,
X	111 833	Odvolávejíc se	dovská pense po manže	li Josefu Cavrno-
C C	jimä	byla mně vyněřena v	in.stráže, předkládám	k temnímu vyzvání
	chov	1, vrch. respisientu 1 1/ křestní list sv	té doery Bétušky Cavra	ochové,rozené
	1	25.červns 1924	v Tomažovcích, a	
		2./ potvrzeni zdeji)iho obecniho úředu,že	dotyčné moje dí-
22 - 1	is the	të jest dosud 1	iezsopstřené, bez výděl	ku a v móm opstro-
Carlos an		vání.		
		Zároveň předkli	idám požsdované	Benningarat Hart
and the second second	. Ju	3/ osvědčení o mén	a a mé doeři státním o	bčanství,vyhotove-
1911 - 1	Section 1	né pardubickým	příslušným okresním ú	iřadem a
A State of	pr	saím,		
		aby také zaopai	třovací požitky pro mo	ije dítě, po zemřelém vější má žádosti
	Josei	fu Cevrno, oh	o v i , ve smyslu dří něřeny.	telet we beckert
	leske	svě byly v brsku vy	tereny.	
		Ve Štěpánovel	cu, dne 21. dubna 1931.	all and the second
and the			Alia	The Carrielornie .
and the second			vdor	/a po vrc.respic. fin.stráže,
A REAL OF	7 141	liohy	Ště pánovsko čp.64.	,p.albrechtice n.O.
1	<u>3 pří</u> dopoz	udené.		
The second	ALL ALL	- Stan Links		the market
0	and the second second	Manager Land	- Harrison - Harrison	market from the

· que	3.	1/3 91/35 H 2 2 1
orign a.t. oria. They a	Lidový sond by dog 14.X.19	
tef t o 1 So 1 t . mar Llos est. define Roste & dalais, Lyter Brandys	Předvolaný Jo Hrodová Utřimo Imatý, bosobn svadl :	or. 3.7.1808 too n.C.Losy, n.L.Mp. 2042,
treen. This ma jesta d Reale se syn mill fobr roj. zámečnictví, byl s várgy v Brandjas n.L. mirdů. Omsanich jedů se miklaž. Tva je svotodn	Neigelt jost sóm . 30 s 31 rokk. Ve ivým, vyučil se st sé strojírny s slá nil sikoholických se choval sosla no	Befrich va sobrozence ve stáří s, byl však dosti zapoměti zašatnáh u fy brandýsk syn nebyl kuříkem a spi re příval, k druhámu pohlaví ž.
, troši nějskou ostopí Shrour, který jej léž te míri v po dějších lé vní na stroj, skuchist Fhieve, Pohlavně nemot	syn asi 1 rok stå tolik, Re. 10ks? De b se vylaft, Ze bu V jenn midfi v ut b sval. Se jej vol stepäl.	Edys byl ale jekne to mevis jen vis il, and fikal, Se hoch, üdy tooh isladky oné pesnel. vi si me vesmi často st en mebyl, ani jindho urazi ne
v r.10. Exenf v ústast v Bobble sefes Dr. Setotúnez, st th. Po provedené operad	ji" dvakráte na li opernván byl pris svových s dutavníc mální.	Tyn byl ich, kde byl také operován pornám lékefem chorob me i hluvy byl syn gcels no:
siusið v noce 1947 je prustán og sáklaðs jek-	v záklední vojemuk vojenská služby pri il v Felhřízová.	Fyn byl y n on dobu 5 masieù a byl s y pomoei dufevni. Tys slout
nripady duffernich nor sebevraid, padouonice	odě so nevyskytly jmóna ná přípedy	V najam r voh, sni jinju namoci za s podobně. V posladn , masbal nějskou
ivi Honoratling, to no fortin higher, nic is a nici probatil a par i a tan,a harpat traba 1 radustva. obec Brandia h.M.	in Yaze by byn w i no sietă o pet , vytervali, by "el ei Yazto, No so e po evitnici sem riovil e byl velm ydlictă Jehn byl pele nemsjetny.	vě lešet jej často ej meksvilo,stévi- lo se vel celot no na nés ne Foclední Svo jest
Figen? unwait new ohu, new ponethen po dobu n	Ats. 53 tobato May. aby syn byl v úst wat. da jeho uzdi	Wikisdy nom
eni sviprávnosti szna	en v nřípadě znev	Jasm ochot , biti jangi opetrovafk
orde pr 4 no.	Prestens :	
Vaig.		Min gelt Jos


59 164 Cđ Okresni sou v Sablonci n. biu., 9.1964. dres 1. a ubuon b0 Od otren. se na předvolání , nar. dne 23.1. , okr. Jbc n.Nis., bytem Velké Hamry destření věci udal : Kopslova . 2413. Destavil Karel F o t r 1903 v Zásadě -učitel v.v., čp.45 a po pře Ing. 1 Státní léčeh Horních Beřki Dne 2 til domi ke i opět doprave Opatre V Jellonci n.! právnosti pre Opatre trovaný "je m yšeti trovaný "je m yšeti normálně . V žival slkohoj trovaného byl Poelec nocíci bylo v Bohuslav Seidl t., y psychiatrické i bvicích . J.května 1954 z. le tvé makce . Asi i h do SLP v Kosmosi bvnictvi ohledně (is. pod č.j. P le h duševné chorobu prníkem vyšetřovani mného jsem opatra m švagrem . Vyšet iovaný pocházi ze pozdějších letech ické nápoje a ner l zdráví . Vyšetř thí bydliště vyšet e Velkých Hamrech j. vyšetřovaný je již Kosmonosích – před řadu let v léčení tím byl i ve SLP v tents den se vrá ohuslav Seidl mnou tomto ústavě. e u chresního soudu e zcela zbaven svěičebny uprchl , resp. itvrtý den byl ing. B ich a od té doby je v vyšetřovaného se ved 19/50 a vyšetřovaný j cho byl původně jeho vníkem ing. Bohuslav, rovaný jev Kosmonos dvou dětí ; v niádí při studich vedl n vové anemocněl . Rod ovaný je kuřákem . rovaného před dodání čp.254 , okr. Jablo otec a po sarti a Seidla Aá . Vyše-ich Aiž od r.1956. se choval a učil epořádný život , po-iče a sestra vyšea do SLP v Kosmo-nec n.Nis. ení podepsáno. Po přečt NI SOUD Skene . a pod. Haver BOLESLAY VMLADE N. 1964 0 9400 RUBRIK Hlad é Boleslavi po vyhovění tionein.M. Okresni send v Ja 4.4 dne 1 .9.196 ca! B189150 rd An Kone : midn r Jacobional Mas 1. 64 Mayilez 18 X 1964 14. IX. 19

11/9/11	11/03/57	11/9	STANDARD 84
1. 1.31 .			
	prověrka		
A REAL PROPERTY OF THE PARTY OF T	Jounde, provede 5.39	akupine e.	prak,
	proferin_ natio	G.	rgolius,
and the second	Harkolla a.Jo Brūsy a.Fo	α.	nan mar,
	Formers a fir	u	Ome
a market and the second se	V diahumi pak ayly		postaveny byto
o/Rei nus	a slepšani předlok	ife a.Hrans. E doplaini	enáho planu.
I/	possinich simple.	pat s pland	Vyanama a délazité
Charles Brass Provide State	pespešit. na v souladu a plan	ly nutno za	en outstaich skupin
24	suino refereitu roov	ly proverous	éat.
2/	it proporce such pl	kyně stanov.	any lednetityjeb
	Street and street and	plm.	Inf skupiny.
34	a pager a plana are rit deply servitors	st terminy and i stano	ní osnov.
	an unal apoluproda	mäji razvá	re vybadovial Torg-
		later.	Solon day of 45/37
4	mi manipulace saky	h na abruce	- Tank Gant.
10/	th apineni uselu de	a na kontri	waland alt.platabe
		ilance.	sontade v sahraniči.
11	lt ukol likvidaos a Pioval spaanoni ved	ova nujiat:	.mint. Ovadot monkron
12/	Mrminy.	Fitne saji! pripady a t	
13/	t observed speleon	ave salist	osti technicko-video-
and the second	iou ave hisvai unol	Laprace.	r, averd asarovy
14/	te svin planu prace	r anjiati	
ed II/ Fun	eenonti.	idnies a ol	
and say many	hobage roually v 1	.Jonas. Ej	smoti pland a una-
auje	a soured toxboad	LODE AVAILA	y planu minister-
avra	lanesaní.	leënosti.	Solan adapted Poplat
A CONTRACTOR OF	ilsnam rederent son	uja wa 4 a	108 NJ Tens se
A STATE OF STATE OF STATE	Mivyon skupin MEG.	poi jadnot	Choles Reales bids
	Why shupin siniots sjaadnini spoledno	dinovat pl	stal da os do hlav-
	akala, Redukent ka	i finimos	-obeyers hid sales
A STATE OF A	a astingno, said	Slear Jue	Fiar a liriza
			Lodpowidan: s. Jockin.
	Margin obsering rough	May pida : Ablf 15.5.	def henies negidie
	1990. In application	phode a un	appledaysid, sheered-
	a cheeld begusza a	t tormind	let along' arst go
the state of the s	strongs anything i	hid benden	aven padau atto pro
A CONTRACTOR OF THE OWNER OF THE	100.	wetlets 1	
Man I State State State	and the second se		the second s

1873	Jahry	g a		
e. Gupfangt Befdigun a ger a ber A ber ber Bilte a ber ber Bergeben Buffelang unter Buffelang Bu	name Subiede Ut. abe Partei	Bri beit Bern topitusijong	Protofile 3ab Ber Berlebigung anf welche der G einer ansern 1 unfilden soter Mag Copfang- (den ber traitumber 2	2 a g internet in the second s
Am 27-1173	and Catalob -	80 1	gille the sing	12 19-18713 740 Januar 1999
- 15 ASTS	Just hel in Tust hel in Tuning pul	4 2	13.30g -4	- 1372.
4 1 7 7	ner Generation and Generation March	40 3	111 25 3 Au	
15 1873.	A Just Cardolling	42 11	This the sty.	The The 1995 Aug
- 14 22 	- Getfolder	- 5	1773	- Standard 12/55
- 13-15M	is the chart	47 6	1942 - 26 2 g. Cu	2 The 13 1873 Jare
- 9.72	theray all	47 7	163 HS. g Hal	an and the test that
-ton 37, 100	- Sime Finch	6 8	434 66 5g Con	and the second second
andream (1) 1173	May heater and	37 2	9215 Wandinging	
Juntary 14 1872	Land Barrida Siefter	12 1-	1904 -5-	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 772	State Lat	33 M.	an Hygher	1 1510 16
the standard and and and and and and and and and an	1 1 Ky Sallantin	0	1000	
5	- John Strang	32 D	1743 66 29 a 200	The tour of some hard
2 39 1073	n Shariffe	11	112 Hig Roke	ica a gastino
14 14-1172 -	- Strated Patro	e as	3598 Hody Same	
34 1171	- Carton Biller	- 42 1	200 269 4 A	Thank Milli
	A de de de			No. 193

Sample No. 12a

STAUDARD 13 in ani fe alt des Materialion_ verten. 98 Desnitt. 58 91 118. 20 5 149 28 n Con 500 2. 45. incefter tos 1. 18 ind 12 iden 15 inenta. Don ~ que astriren 10 fui I Restor. 30 anterfasi Lich . 8.521 1111220

Sample No. 13a

13A/G BNQ/ST 184 STANZARD 334 , ralaston denig ·har ling des da 17. 10.2 Contra. 20. 5 99.003 werter Etraid Of 031. 225 Penil Rabor 2% camenta . 7.98 9 Lichter 12. Och astrinen 10 - Cro meifter Torn 14 i Derfalide Fritten 10 ias . 11 10 mma 1104 3 A.

ola Vinin Kofloring a lohan Unbern boy to alla How Undangoig winter

Ozonization has no effect on the colour of archive documents. Changes in the colour of the recording media of archive documents were not measured; photographic documentation was acquired and any changes will be progressively monitored. Based on visual evaluation, ozonization does not have a demonstrable effect on changes in the colour of recording media.

3.7.2 Changes in the total colour difference $\Delta E * of$ archive documents

It was found by comparison of the colour differences of all the measured values of selected types of archive documents that ozonization does not have a significant effect on colour changes. The measured values of the total colour difference following ageing (in both a moist heat and a dry heat atmosphere) of samples of paper following ozonization and without ozonization are very similar (see *Tab. 5*).

Paper sample	L*	a*	b*	ΔL*	∆a*	∆b*	ΔE*
1 – unaged	63.93	-10.08	-17.37				
1 – moist heat	62.72	-12.49	-6.91	-1.17	-2.43	10.4	10.8
1 – dry heat	62.68	-13.40	-5.53	-1.21	-3.34	11.8	12.3
1 – ozonization – unaged	62.27	-10.28	-16.21	-1.62	-0.22	1.10	1.97
1 – ozonization – moist heat	62.59	-12.42	-6.53	-1.30	-2.36	10.8	11.1
1 - ozonization - dry heat	62.39	-13.22	-5.85	-1.50	-3.17	11.5	12.0
2 – unaged	70.67	-12.78	-0.71				
2 – moist heat	67.81	-8.14	9.35	-2.85	4.64	10.1	11.4
2 – dry heat	67.99	-10.44	10.50	-2.68	2.35	11.2	11.8
2 – ozonization – unaged	69.95	-12.60	-0.07	-0.71	0.19	0.64	0.97
2 – ozonization – moist heat	69.38	-8.36	8.97	-1.29	4.42	9.68	10.7
2 – ozonization – dry heat	68.43	-10.99	9.09	-2.24	1.79	9.79	10.2
3 – unaged	68.11	24.84	7.03				
3 – moist heat	65.24	18.75	12.85	-2.87	-6.08	5.82	8.89
3 – dry heat	66.87	19.88	14.86	-1.24	-4.96	7.83	9.35
3 – ozonization – unaged	68.18	25.26	7.47	0.07	0.42	0.44	0.24
3 – ozonization – moist heat	65.35	19.04	12.98	-2.76	-5.80	5.95	8.75
3 – ozonization – dry heat	66.96	20.55	14.61	-1.15	-4.29	7.57	8.78
4 – unaged	75.20	-16.03	9.77				
4 – moist heat	72.46	-8.54	15.61	-2.74	7.49	5.85	9.89
4 – dry heat	73.69	-5.94	17.91	-1.51	10.1	8.15	13.1
4 – ozonization – unaged	75.41	-17.94	8.91	0.21	-1.91	-0.85	2.10
4 – ozonization – moist heat	72.88	-8.36	14.92	-2.33	7.67	5.16	9.53
4 – ozonization – dry heat	73.92	-6.79	17.36	-1.29	9.25	7.60	12.0
5 – unaged	83.56	1.42	17.48				
5 – moist heat	74.63	4.87	21.91	-8.93	3.44	4.43	10.6
5 – dry heat	77.38	4.27	25.57	-6.19	2.85	8.08	10.6
5 – ozonization – unaged	82.21	2.19	19.17	-1.36	0.77	1.69	2.30
5 – ozonization – moist heat	74.08	4.86	23.48	-9.48	3.44	6.00	11.7
5 – ozonization – dry heat	77.78	4.47	26.83	-5.78	3.05	9.35	11.4
6 – unaged	87.29	-0.01	14.63				
6 – moist heat	77.57	4.01	21.14	-9.72	4.01	6.51	12.4
6 – dry heat	82.38	2.22	24.98	-4.91	2.23	10.4	11.7
6 – ozonization – unaged	87.43	-0.04	15.01	0.14	-0.04	0.38	0.41
6 – ozonization – moist heat	77.62	3.84	21.08	-9.66	3.85	6.45	12.2
6 – ozonization – dry heat	82.13	2.37	24.81	-5.16	2.37	10.2	11.7

Tab. 5. Effect of ozonization and artificial ageing on the overall colour difference of archive documents.

Tab. 5 continued

7 unaged 88.47 -0.17 14.56 7 -mois heat 79.85 3.56 19.85 -8.62 3.73 5.29 10.8 7 -dry heat 88.38 1.60 22.71 -4.64 1.77 8.15 9.54 7 -ozonization - mois heat 80.69 3.54 19.97 -7.78 3.72 5.41 10.2 7 -ozonization - dry heat 84.29 1.99 23.88 -4.18 2.16 9.32 10.4 8<-moist heat 66.06 6.43 20.78 -18.0 3.61 2.48 18.5 8 - ozonization - maged 84.43 2.67 1.75 0.38 -0.14 -0.34 0.53 8 - ozonization - mist heat 67.18 5.99 19.99 -16.9 3.17 1.7 17.3 9 -unaged 72.91 7.01 26.36 9 -0.34 12.3 9 -ozonization - maged 72.54 6.61 27.62 -3.41	Paper sample	L*	a*	b*	ΔL*	∆a*	Δb*	ΔΕ*
7 - most heat 79.85 3.56 19.85 -8.62 3.73 5.29 10.8 7 - dy heat 83.83 1.60 22.71 -4.64 1.77 8.15 9.43 7 - ozonization - moist heat 80.69 3.54 19.97 -7.78 3.72 5.41 10.2 7 - ozonization - dry heat 84.29 1.99 23.88 -4.18 2.16 9.32 10.4 8 - unaged 84.20 1.99 23.84 -4.18 2.16 9.31 10.4 8 - moist heat 66.06 6.43 2.078 -18.0 3.61 2.48 18.5 8 - ozonization - maged 84.34 2.67 17.95 0.38 -0.04 -0.03 9 - unaged 72.91 7.01 23.22 -3.11 12.8 9 9 - unaged 72.91 7.01 23.22 -11.9 0.59 -3.14 12.8 9 - ozonization - moist heat 61.63 7.42 2.18 -11.3 0.40 0.84		88.47	-0.17	14.56				_
7 - dry heat 83.83 1.60 22.71 -4.64 1.77 8.15 9.54 7 - ozonization - moist heat 88.96 -0.56 13.50 0.49 -0.38 -1.06 1.23 7 - ozonization - moist heat 84.05 2.82 18.97 -7.78 3.72 5.41 10.2 8 - maged 64.05 2.82 18.29 - - - 4.18 2.16 9.32 10.4 8 - maged 68.43 2.078 -18.0 3.61 2.48 18.53 8 - ozonization - maged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.53 8 - ozonization - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.41 12.8 9 - dry heat 61.03 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - moist heat 73.37 5.90 24.06 -6.67 7.8 8.94 10 - unaged 80.04 4.12 22.47 <th>0</th> <th></th> <th></th> <th></th> <th>-8.62</th> <th>3 73</th> <th>5 29</th> <th>10.8</th>	0				-8.62	3 73	5 29	10.8
7 - ozonization - unaged 88.96 -0.56 13.50 0.49 -0.38 -1.06 1.23 7 - ozonization - moist heat 84.05 2.82 18.29 -9.97 23.88 -4.18 2.16 9.32 10.4 8 - unaged 84.05 2.82 18.29 - 9.38 -4.18 2.16 9.32 10.4 8 - moist heat 66.06 6.43 20.78 -18.0 3.61 2.48 18.5 8 - ozonization - unaged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.53 8 - ozonization - moist heat 67.18 5.99 19.99 -16.9 3.17 1.7 17.3 9 - unaged 72.91 7.01 26.36 - - - 0.52 -3.41 12.8 9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 -0.60 0.81 10 - unaged 80.04 4.12 22.47 - - - 1.13 0.41 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
7 - ozonization - moist heat 80.69 3.54 19.97 -7.78 3.72 5.41 10.2 7 - ozonization - dry heat 84.05 2.82 18.29 8 16.9 23.88 -4.18 2.16 9.32 10.4 8 - moist heat 66.06 6.43 20.78 -18.0 3.61 2.48 18.55 8 - ozonization - unaged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.53 8 - ozonization - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.41 12.3 9 - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.41 12.3 9 - ozonization - unaged 7.24 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - unaged 73.37 5.90 2.40 -3.41 12.3 9 - ozonization - unaged 80.04 4.12 2.247 -0.37 -0.41 -0.318 11.7 9 - ozonization - unaged 80	•							
7 - ozonization - dry heat 84.29 1.99 23.88 -4.18 2.16 9.32 10.4 8 - moist heat 66.06 6.43 20.78 -18.0 3.61 2.48 18.5 8 - moist heat 78.78 4.91 23.45 -5.27 2.09 7.15 9.13 8 - ozonization - unaged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.53 8 - ozonization - unoist heat 67.18 5.99 19.99 -16.9 3.17 1.7 17.3 8 - ozonization - unaged 72.91 7.01 26.36	0							
8 - unaged 84.05 2.82 18.29 8 - moist heat 66.06 6.43 20.78 -18.0 3.61 2.48 18.5 8 - dry heat 78.78 4.91 23.45 -5.27 2.09 7.15 9.13 8 - ozonization - unaged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.53 9 - ozonization - dry heat 80.31 4.53 25.17 -3.73 1.71 6.80 8.01 9 - unaged 72.91 7.01 26.36								
8 - moist heat 66.06 6.43 20.78 -18.0 3.61 2.48 18.5 8 - ozonization - unaged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.31 8 - ozonization - moist heat 67.18 5.99 19.99 -16.9 3.17 1.7 17.3 8 - ozonization - dry heat 80.31 4.53 25.17 -3.73 1.71 6.80 8.01 9 - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.14 12.8 9 - dry heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 0.60 0.81 9 - ozonization - unaged 73.37 5.90 24.06 -6.67 1.78 1.89 7.09 10 - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - unaged 80.42 3.98 2.244 <th></th> <th></th> <th></th> <th></th> <th>1.10</th> <th>2.10</th> <th>7.52</th> <th>10.4</th>					1.10	2.10	7.52	10.4
8 - dry heat 78.78 4.91 23.45 -5.27 2.09 7.15 9.13 8 - ozonization - unoist heat 67.18 5.90 17.95 0.38 -0.14 -0.34 0.53 8 - ozonization - dry heat 60.31 4.53 25.17 -3.73 1.71 6.80 8.01 9 - unaged 72.91 7.01 26.36 - - - - - -3.14 12.3 9 - dry heat 61.03 7.61 23.22 -11.9 0.59 -3.14 12.3 9 - ozonization - unaged 7.254 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - moist heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - dry heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - unaged <th></th> <th></th> <th></th> <th></th> <th>-18.0</th> <th>3.61</th> <th>2 48</th> <th>18 5</th>					-18.0	3.61	2 48	18 5
8 - ozonization - unaged 84.43 2.67 17.95 0.38 -0.14 -0.34 0.53 8 - ozonization - moist heat 67.18 5.99 19.99 -16.9 3.17 1.7 17.3 9 - unaged 72.91 7.01 26.36								
8 - ozonization - moist heat 67.18 5.99 19.99 -16.9 3.17 1.7 17.3 8 - ozonization - dry heat 80.31 4.53 25.17 -3.73 1.71 6.80 8.01 9 - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.41 12.3 9 - ozonization - unaged 72.54 6.61 23.22 -11.9 0.59 -3.14 12.3 9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - unaged 80.04 4.12 22.47 0.41 -3.18 11.7 9 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - unaged 86.29 0.44 15.15 11 unaged 86.29 0.44 15.15 11 unaged 86.74 0.07 14.06 0.45 -0.38 -1.09 1.24 11 - ozonization - unaged								
8 - ozonization - dry heat 80.31 4.53 25.17 -3.73 1.71 6.80 8.01 9 - unaged 72.91 7.01 26.36								
9 - unaged 72.91 7.01 26.36 9 - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.11 12,8 9 - dry heat 61.03 7.61 23.22 -11.9 0.59 -3.14 12,3 9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - moist heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - dry heat 64.59 9.21 20.0 -8.32 2.20 2.43 8.94 10 - unaged 80.04 4.12 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - moist heat 73.25 6.13 24.44 -6.77 2.65 5.83 9.32 11 - unaged 80.47 3.30 20.84 -5.82 2.86 5.69 8.62 11 - unosit heat 80.47 3.30 20.84 -5.82 2.86 5.69 8.62								
9 - moist heat 60.62 7.53 22.95 -12.3 0.52 -3.41 12,8 9 - dry heat 61.03 7.61 23.22 -11.9 0.59 -3.14 12.3 9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - moist heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - dry heat 64.59 9.21 20.0 -8.32 2.20 2.43 8.94 10 - unaged 80.04 4.12 22.47 - - - - - - - 0.01 0.41 -5.83 9.09 10 0.01 0.01 0.04 0.10 0.93 - 0.37 -0.13 0.01 0.40 0.51 1.98 7.35 10 - ozonization - moist heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15 11 -0.90 9.08 10.00 11 - ozonization - una					5.15	1.71	0.00	0.01
9 - dry heat 61.03 7.61 23.22 -11.9 0.59 -3.14 12.3 9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - moist heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - dry heat 64.59 9.21 20.0 -8.32 2.20 2.43 8.94 10 - unaged 80.04 4.12 22.47 1.59 7.09 10 - ozonization - moist heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - moist heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15 11 naged 86.74 0.07 14.06 0.45 -0.38 -1.09 1.24 11 - ozonization - mised heat 81.23 3.17 20.89 -5.06 2.73 5.74 8.12					-123	0.52	-341	12.8
9 - ozonization - unaged 72.54 6.61 25.76 -0.37 -0.40 -0.60 0.81 9 - ozonization - moist heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - dry heat 64.59 9.21 20.0 -8.32 2.20 2.43 8.94 10 - unaged 80.04 4.12 22.47								-
9 - ozonization - moist heat 61.63 7.42 23.18 -11.3 0.41 -3.18 11.7 9 - ozonization - dry heat 64.59 9.21 20.0 -8.32 2.20 2.43 8.94 10 - unaged 80.04 4.12 22.47 7.83 7.09 10 - dry heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - moist heat 73.25 6.13 24.44 -6.79 2.01 1.98 7.35 10 - ozonization - dry heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15 11 moist heat 80.47 3.30 20.84 -5.82 2.86 5.69 8.62 11 - ozonization - unaged 86.74 0.07 14.06 0.45 -0.38 -1.09 1.24 11 - ozoni	· · ·							
9 - ozonization - dry heat 64.59 9.21 20.0 -8.32 2.20 2.43 8.94 10 - unaged 80.04 4.12 22.47 7.337 5.90 24.06 -6.67 1.78 1.59 7.09 10 - dry heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - moist heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15 1.44 -6.79 2.01 1.98 7.35 9.08 10.0 11 - unaged 86.29 0.44 15.15 8.62 11- 4.23 -0.07 14.06 0.45 -0.38 -1.09 1.24 1.24 <	0							
10 - unaged 80.04 4.12 22.47 10 - moist heat 73.37 5.90 24.06 -6.67 1.78 1.59 7.09 10 - dry heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - moist heat 73.25 6.13 24.44 -6.79 2.01 1.98 7.35 10 - ozonization - dry heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15 11								
10 - moist heat 73.37 5.90 24.06 -6.67 1.78 1.59 7.09 10 - dry heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - moist heat 73.25 6.13 24.44 -6.79 2.01 1.98 7.35 10 - ozonization - dry heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15					0.52	2.20	2.13	512 T
10 - dry heat 73.35 6.56 27.95 -6.69 2.44 5.45 8.99 10 - ozonization - unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - ozonization - moist heat 73.25 6.13 24.44 -6.79 2.01 1.98 7.35 10 - ozonization - dry heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15 - - - - - 5.82 2.86 5.69 8.62 11 - dry heat 82.40 2.24 24.23 -3.89 1.79 9.08 10.0 11 - ozonization - unaged 86.74 0.07 14.06 0.45 -0.38 -1.09 1.24 11 - ozonization - dry heat 82.70 2.34 24.29 -3.59 1.90 9.14 10.0 12 - unaged 75.02 3.83 21.03	8				-6.67	1 78	1 59	7 09
10 - zonization – unaged 80.42 3.98 22.47 0.37 -0.13 0.01 0.40 10 - zonization – moist heat 73.25 6.13 24.44 -6.79 2.01 1.98 7.35 10 - zonization – dry heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - moist heat 86.29 0.44 15.15								
10 - ozonization - moist heat 73.25 6.13 24.44 -6.79 2.01 1.98 7.35 10 - ozonization - dry heat 73.27 6.76 28.30 -6.77 2.65 5.83 9.32 11 - unaged 86.29 0.44 15.15								
10 - ozonization - dry heat73.276.7628.30-6.772.655.839.3211 - unaged86.290.4415.1511 - moist heat80.473.3020.84-5.822.865.698.6211 - dry heat82.402.2424.23-3.891.799.0810.011 - ozonization - unaged86.740.0714.060.45-0.38-1.091.2411 - ozonization - moist heat81.233.1720.89-5.062.735.748.1211 - ozonization - dry heat82.702.3424.29-3.591.909.1410.012 - unaged75.023.8321.03	-							
11 - unaged 86.29 0.44 15.15 11 - moist heat 80.47 3.30 20.84 -5.82 2.86 5.69 8.62 11 - dry heat 82.40 2.24 24.23 -3.89 1.79 9.08 10.0 11 - ozonization - unaged 86.74 0.07 14.06 0.45 -0.38 -1.09 1.24 11 - ozonization - moist heat 81.23 3.17 20.89 -5.06 2.73 5.74 8.12 11 - ozonization - dry heat 82.70 2.34 24.29 -3.59 1.90 9.14 10.0 12 - unaged 75.02 3.83 21.03								
11 - mois heat 80.47 3.30 20.84 -5.82 2.86 5.69 8.62 11 - dry heat 82.40 2.24 24.23 -3.89 1.79 9.08 10.0 11 - ozonization - unaged 86.74 0.07 14.06 0.45 -0.38 -1.09 1.24 11 - ozonization - moist heat 81.23 3.17 20.89 -5.06 2.73 5.74 8.12 11 - ozonization - dry heat 82.70 2.34 24.29 -3.59 1.90 9.14 10.0 12 - unaged 75.02 3.83 21.03 - - - - - - - - - - 5 10.2 1.2 - - - - - - - 5 10.2 1.2 - - - 0.51 0.1 0.05 10.2 - - - 0.51 0.1 0.53 6.57 12 - - 0.29 -1.22 9.37 - 12 - 0.29 -1.22 9.37 12 - 0.29<	-				0.77	2.05	5.65	7.02
11 - dry heat82.402.2424.23-3.891.799.0810.011 - ozonization - unaged86.740.0714.060.45-0.38-1.091.2411 - ozonization - moist heat81.233.1720.89-5.062.735.748.1211 - ozonization - dry heat82.702.3424.29-3.591.909.1410.012 - unaged75.023.8321.03					-5.82	2 86	5 69	8.62
11 - ozonization - unaged86.740.0714.060.45-0.38-1.091.2411 - ozonization - moist heat81.233.1720.89-5.062.735.748.1211 - ozonization - dry heat82.702.3424.29-3.591.909.1410.012 - unaged75.023.8321.03								
11 - ozonization - moist heat81.233.1720.89-5.062.735.748.1211 - ozonization - dry heat82.702.3424.29-3.591.909.1410.012 - unaged75.023.8321.0312-12 - moist heat64.975.2920.49-10.11.46-0.5510.212 - dry heat70.345.6824.40-4.691.863.386.0612 - ozonization - unaged74.944.3421.13-0.090.510.10.5312 - ozonization - unaged70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7613.7611.213-noist heat11.213 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged85.48-0.3610.48-1.170.380.291.2614 - unaged85.48-0.3610.48-1.170.380.292.752.7714 - unaged85.48-0.3610.48-1.42<	-							
11 - ozonization - dry heat82.702.3424.29-3.591.909.1410.012 - unaged75.023.8321.0321.0312 - moist heat64.975.2920.49-10.11.46-0.5510.212 - dry heat70.345.6824.40-4.691.863.386.0612 - ozonization - unaged74.944.3421.13-0.090.510.10.5312 - ozonization - unaged74.944.3421.13-0.090.510.10.5312 - ozonization - moist heat65.825.1119.81-9.201.29-1.229.3712 - ozonization - dry heat70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7613.7611.213 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - dry heat85.48-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4814-0.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.68 <th>8</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	8							
12 - unaged 75.02 3.83 21.03 12 - moist heat 64.97 5.29 20.49 -10.1 1.46 -0.55 10.2 12 - dry heat 70.34 5.68 24.40 -4.69 1.86 3.38 6.06 12 - ozonization - unaged 74.94 4.34 21.13 -0.09 0.51 0.1 0.53 12 - ozonization - moist heat 65.82 5.11 19.81 -9.20 1.29 -1.22 9.37 12 - ozonization - dry heat 70.64 6.26 25.29 -4.38 2.43 4.25 6.57 13 - unaged 87.37 0.76 13.76 11.2 13- 11.2 13- 11.2 13- 11.2 13- 11.2 13- 11.2 13- 13- 13.4 3.82 13.76 11.2 13- 13- 11.2 13- 13- 11.2 13- 13- 11.2 13- 13- 0.04 3.34 3.82 13- 11.2 13 - ozonization - unaged 86.20 1.14 14.04 -1.17 0.38 0.29								
12 - moist heat64.975.2920.49-10.11.46-0.5510.212 - dry heat70.345.6824.40-4.691.863.386.0612 - ozonization - unaged74.944.3421.13-0.090.510.10.5312 - ozonization - moist heat65.825.1119.81-9.201.29-1.229.3712 - ozonization - dry heat70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7611.213 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged85.48-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.481.46-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80								
12 - dry heat70.345.6824.40-4.691.863.386.0612 - ozonization - unaged74.944.3421.13-0.090.510.10.5312 - ozonization - moist heat65.825.1119.81-9.201.29-1.229.3712 - ozonization - dry heat70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7613.7611.213 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged86.201.1414.04-10.32.754.6511.613 - ozonization - unaged85.48-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4814-14.04-1.032.426.5810.614 - moist heat77.582.0617.06-7.892.426.5810.614 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged7					-10.1	1.46	-0.55	10.2
12 - ozonization - unaged74.944.3421.13-0.090.510.10.5312 - ozonization - moist heat65.825.1119.81-9.201.29-1.229.3712 - ozonization - dry heat70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7613.7611.213 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - unaged86.201.1414.04-10.32.754.6511.613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.614 - unaged85.48-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4814-0.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - moist heat78.441.9816.41-7.032.345.939.49								
12 - ozonization - moist heat65.825.1119.81-9.201.29-1.229.3712 - ozonization - dry heat70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7613.7613 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.614 - unaged85.48-0.3610.48-0.292.752.772.7714 - moist heat77.582.0617.06-7.892.426.5810.614 - dry heat83.44-0.3213.61-2.040.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - moist heat78.441.9816.41-7.032.345.939.49	· · · · · · · · · · · · · · · · · · ·							
12 - ozonization - dry heat70.646.2625.29-4.382.434.256.5713 - unaged87.370.7613.7613 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.613 - ozonization - dry heat84.54-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4814-0.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.441.9816.41-7.032.345.939.49	8							
13 - unaged 87.37 0.76 13.76 13 - moist heat 77.39 3.65 18.07 -9.98 2.89 4.31 11.2 13 - dry heat 85.52 0.72 17.09 -1.85 -0.04 3.34 3.82 13 - ozonization - unaged 86.20 1.14 14.04 -1.17 0.38 0.29 1.26 13 - ozonization - moist heat 77.12 3.52 18.40 -10.3 2.75 4.65 11.6 13 - ozonization - dry heat 84.54 -0.65 13.23 0.05 -0.29 2.75 2.77 14 - unaged 85.48 -0.36 10.48 14- -4ry heat 83.44 -0.32 13.61 -2.04 0.05 3.13 3.73 14 - ozonization - unaged 85.47 -0.46 9.80 -0.01 -0.1 -0.68 0.69 14 - ozonization - unaged 85.47 -0.46 9.80 -0.01 -0.1 -0.68 0.69 14 - ozonization - moist heat 78.44 1.98 16.41 -7.03 2.34 5.93 9.49 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
13 - moist heat77.393.6518.07-9.982.894.3111.213 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.613 - ozonization - dry heat84.54-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4811.410.4811.210.4810.6514 - dry heat83.44-0.3213.61-2.040.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.69 <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>						-		
13 - dry heat85.520.7217.09-1.85-0.043.343.8213 - ozonization - unaged86.201.1414.04-1.170.380.291.2613 - ozonization - moist heat77.123.5218.40-10.32.754.6511.613 - ozonization - dry heat84.54-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4814 - moist heat77.582.0617.06-7.892.426.5810.614 - dry heat83.44-0.3213.61-2.040.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged78.441.9816.41-7.032.345.939.49	-				-9.98	2.89	4.31	11.2
13 - ozonization - unaged 86.20 1.14 14.04 -1.17 0.38 0.29 1.26 13 - ozonization - moist heat 77.12 3.52 18.40 -10.3 2.75 4.65 11.6 13 - ozonization - dry heat 84.54 -0.65 13.23 0.05 -0.29 2.75 2.77 14 - unaged 85.48 -0.36 10.48 14.4 -10.3 2.42 6.58 10.6 14 - moist heat 77.58 2.06 17.06 -7.89 2.42 6.58 10.6 14 - dry heat 83.44 -0.32 13.61 -2.04 0.05 3.13 3.73 14 - ozonization - unaged 85.47 -0.46 9.80 -0.01 -0.1 -0.68 0.69 14 - ozonization - unaged 78.44 1.98 16.41 -7.03 2.34 5.93 9.49								
13 - ozonization - moist heat 77.12 3.52 18.40 -10.3 2.75 4.65 11.6 13 - ozonization - dry heat 84.54 -0.65 13.23 0.05 -0.29 2.75 2.77 14 - unaged 85.48 -0.36 10.48 14- 14- 14- 17.58 2.06 17.06 -7.89 2.42 6.58 10.6 14 - dry heat 83.44 -0.32 13.61 -2.04 0.05 3.13 3.73 14 - ozonization - unaged 85.47 -0.46 9.80 -0.01 -0.1 -0.68 0.69 14 - ozonization - unaged 78.44 1.98 16.41 -7.03 2.34 5.93 9.49	-							
13 - ozonization - dry heat84.54-0.6513.230.05-0.292.752.7714 - unaged85.48-0.3610.4814 - moist heat77.582.0617.06-7.892.426.5810.614 - dry heat83.44-0.3213.61-2.040.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - unaged78.441.9816.41-7.032.345.939.49								
14 - unaged 85.48 -0.36 10.48 14 - moist heat 77.58 2.06 17.06 -7.89 2.42 6.58 10.6 14 - dry heat 83.44 -0.32 13.61 -2.04 0.05 3.13 3.73 14 - ozonization - unaged 85.47 -0.46 9.80 -0.01 -0.1 -0.68 0.69 14 - ozonization - moist heat 78.44 1.98 16.41 -7.03 2.34 5.93 9.49								
14 - moist heat77.582.0617.06-7.892.426.5810.614 - dry heat83.44-0.3213.61-2.040.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - moist heat78.441.9816.41-7.032.345.939.49								
14 - dry heat83.44-0.3213.61-2.040.053.133.7314 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - moist heat78.441.9816.41-7.032.345.939.49					-7.89	2.42	6.58	10.6
14 - ozonization - unaged85.47-0.469.80-0.01-0.1-0.680.6914 - ozonization - moist heat78.441.9816.41-7.032.345.939.49								
14 – ozonization – moist heat 78.44 1.98 16.41 –7.03 2.34 5.93 9.49	-							
	-							
17 - 0.00112a(1011 - 0.1)y cat 05.54 - 0.05 15.25 0.05 - 0.29 2.75	14 – ozonization – dry heat	85.54	-0.65	13.23	0.05	-0.29	2.75	2.77

3.8 Effect of ozonization on selected microorganisms

Tab. 6 gives the results of microbiological tests The growth of mould was identical on all the samples and agreed with the control sample. Thus the performed ozonization method does not have any effect on the vitality and growth properties of the tested moulds.

Sample	A. niger	P. aurantiogriseum	T. koningii
1	+++	+++	+++
2	+++	+++	+++
3	+++	+++	+++
4	+++	+++	+++
5	+++	+++	+++
6	+++	+++	+++
7	+++	+++	+++
8	+++	+++	+++
9	+++	+++	+++
10	+++	+++	+++
Control	+++	+++	+++

Tab. 6.	Effect of ozonization on selected archive microorganisms.
---------	---

Evaluation: ++ strong growth (covers the entire surface of the paper square) and sporulation ++ growth (covers a major part of the surface of the paper square)

growth (covers a major part of the same of the paper square)
 weak growth (isolated colonies)

- no growth

4 CONCLUSIONS

On the basis of the above results of measurements of the mechanical, optical and chemical properties of Whatman No. 1 filter paper, paper for documents pursuant to ISO 9706, groundwood paper, wood-free writing paper, bleached sulphite and chemothermomechanical pulp, it can be stated that ozonization performed by the method described in Chapter 2 **does not have an observable effect** on the monitored properties.

Similarly, study of the effect of ozonization on selected aryl methane dyes Acid Red 87, Acid Green 16, Basic Violet 1, Basic Blue 6, Basic Green 4 and actual archive materials from the 19th and 20th centuries confirmed that this technology **does not have a negative effect** on the colours.

However, ozonization **cannot** be considered to constitute effective disinfection of documents.